4-dimensional computed tomography imaging and treatment planning

被引:407
作者
Keall, P [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23298 USA
关键词
D O I
10.1053/j.semradonc.2003.10.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In the era of conformal therapy and intensity-modulated therapy, there is an increased desire to raise tumor dose to facilitate improved survival and decrease normal tissue dose to reduce treatment-related complications. Setup accuracy and internal motion limit our ability to reduce margins. Internal motion has both interfraction and intrafraction components, although only the intrafraction component will be addressed here. Intrafraction motion is significant for lung, liver, and pancreatic radiotherapy and to a lesser extent breast and prostate radiotherapy. A method to explicitly account for intrafraction motion is to temporally adjust the treatment beam based on the tumor position with time such that the motion of the radiation beam is synchronized with the tumor motion. This addition of time into the 3-dimensional treatment process is termed 4-dimensional (4D) radiotherapy. Four-dimensional radiotherapy may allow safe clinical target volume-planning target volume margin reduction to achieve the goals of raised tumor dose and decreased normal tissue dose. This article discusses methodology for 4D CT imaging and 4D treatment planning, with some comments on 4D radiation delivery. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 69 条
[1]   Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration [J].
Barnes, EIA ;
Murray, BR ;
Robinson, DM ;
Underwood, LJ ;
Hanson, J ;
Roa, WHY .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 50 (04) :1091-1098
[2]  
CHOI NCH, 1981, CANCER, V48, P101, DOI 10.1002/1097-0142(19810701)48:1<101::AID-CNCR2820480120>3.0.CO
[3]  
2-S
[4]   Volumetric transformation of brain anatomy [J].
Christensen, GE ;
Joshi, SC ;
Miller, MI .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) :864-877
[5]   Image-based dose planning of intracavitary brachytherapy: Registration of serial-imaging studies using deformable anatomic templates [J].
Christensen, GE ;
Carlson, B ;
Chao, KSC ;
Yin, P ;
Grigsby, PW ;
Nguyen, K ;
Dempsey, JF ;
Lerma, FA ;
Bae, KT ;
Vannier, MW ;
Williamson, JF .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :227-243
[6]   The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy [J].
Dawson, LA ;
Brock, KK ;
Kazanjian, S ;
Fitch, D ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK ;
Balter, J .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (05) :1410-1421
[7]   Cone-beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: Potential for verification of radiotherapy of lung cancer [J].
Ford, EC ;
Chang, J ;
Mueller, K ;
Sidhu, K ;
Todor, D ;
Mageras, G ;
Yorke, E ;
Ling, CC ;
Amols, H .
MEDICAL PHYSICS, 2002, 29 (12) :2913-2924
[8]   Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging [J].
Ford, EC ;
Mageras, GS ;
Yorke, E ;
Rosenzweig, KE ;
Wagman, R ;
Ling, CC .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2002, 52 (02) :522-531
[9]   Respiration-correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning [J].
Ford, EC ;
Mageras, GS ;
Yorke, E ;
Ling, CC .
MEDICAL PHYSICS, 2003, 30 (01) :88-97
[10]   Conformal radiotherapy (CRT) planning for lung cancer: Analysis of intrathoracic organ motion during extreme phases of breathing [J].
Giraud, P ;
De Rycke, Y ;
Dubray, B ;
Helfre, S ;
Voican, D ;
Guo, L ;
Rosenwald, JC ;
Keraudy, K ;
Housset, M ;
Touboul, E ;
Cosset, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (04) :1081-1092