Identifying key electrostatic interactions in Rhizomucor miehei lipase:: the influence of solvent dielectric

被引:13
作者
Jääskeläinen, S
Verma, CS [1 ]
Hubbard, RE
Caves, LSD
机构
[1] Univ York, Dept Chem, Prot Struct Grp, York YO1 5DD, N Yorkshire, England
[2] Helsinki Univ Technol, Lab Bioproc Engn, FIN-02015 Helsinki, Finland
关键词
Rhizomucor miehei lipase; interfacial activation; conformational change; electrostatic interaction energy; Poisson-Boltzmann calculation;
D O I
10.1007/s002140050426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conformational change associated with the interfacial activation of Rhizomucor miehei lipase involves the displacement of an m-helical lid (residues 82-96) away from the active site on moving from water (high dielectric) to lipid (low dielectric). The presence of two media of very different dielectric properties suggests that electrostatic inter-actions play an important role in this process. We have used linearized Poisson-Boltzmann calculations to examine the key electrostatic interactions which contribute to lid stability in the closed and open states. It is the two charged residues of the lid, Arg86 and Asp91, that form the strongest electrostatic interactions with the rest of the protein. We identify key residues whose interactions with the lid are significantly perturbed by the change in the dielectric of the medium: Asp61, Arg80, Lys109, Glu117 and the active-site residues Asp203 and Asp256, all of which lie within approximately 20 Angstrom of the lid. We suggest that these residues are good candidates for site-specific mutation studies, which could help elucidate their role in the lipase activation mechanism.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 30 条
[21]   THEORETICAL-STUDIES OF RHIZOMUCOR-MIEHEI LIPASE ACTIVATION [J].
NORIN, M ;
OLSEN, O ;
SVENDSEN, A ;
EDHOLM, O ;
HULT, K .
PROTEIN ENGINEERING, 1993, 6 (08) :855-863
[22]   Dynamics of proteins in different solvent systems: Analysis of essential motion in lipases [J].
Peters, GH ;
vanAalten, DMF ;
Edholm, O ;
Toxvaerd, S ;
Bywater, R .
BIOPHYSICAL JOURNAL, 1996, 71 (05) :2245-2255
[23]   Computational studies of the activation of lipases and the effect of a hydrophobic environment [J].
Peters, GH ;
Toxvaerd, S ;
Olsen, OH ;
Svendsen, A .
PROTEIN ENGINEERING, 1997, 10 (02) :137-147
[24]   Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase [J].
Peters, GH ;
Olsen, OH ;
Svendsen, A ;
Wade, RC .
BIOPHYSICAL JOURNAL, 1996, 71 (01) :119-129
[25]   Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im(+)H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants [J].
Plou, FJ ;
Kowlessur, D ;
Malthouse, JPG ;
Mellor, GW ;
Hartshorn, MJ ;
Pinitglang, S ;
Patel, H ;
Topham, CM ;
Thomas, EW ;
Verma, C ;
Brocklehurst, K .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (05) :1088-1111
[26]   ACTION DE LA LIPASE PANCREATIQUE SUR LES ESTERS EN EMULSION [J].
SARDA, L ;
DESNUELLE, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1958, 30 (03) :513-521
[27]   The open conformation of a Pseudomonas lipase [J].
Schrag, JD ;
Li, YG ;
Cygler, M ;
Lang, DM ;
Burgdorf, T ;
Hecht, HJ ;
Schmid, R ;
Schomburg, D ;
Rydel, TJ ;
Oliver, JD ;
Strickland, LC ;
Dunaway, CM ;
Larson, SB ;
Day, J ;
McPherson, A .
STRUCTURE, 1997, 5 (02) :187-202
[28]   A MODEL FOR THE MOLECULAR MECHANISM OF INTERFACIAL ACTIVATION OF PHOSPHOLIPASE-A2 SUPPORTING THE SUBSTRATE THEORY [J].
THUREN, T .
FEBS LETTERS, 1988, 229 (01) :95-99
[29]  
Vulfson E. N., 1994, LIPASES THEIR STRUCT, P271
[30]   ON THE CALCULATION OF PK(A)S IN PROTEINS [J].
YANG, AS ;
GUNNER, MR ;
SAMPOGNA, R ;
SHARP, K ;
HONIG, B .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 15 (03) :252-265