Phylogenetic relationships and evolution of extant horsetails, equisetum, based on chloroplast DNA sequence data (rbcL and trnL-F)

被引:109
作者
Des Marais, DL
Smith, AR
Britton, DM
Pryer, KM [1 ]
机构
[1] Duke Univ, Dept Biol, Durham, NC 27708 USA
[2] Field Museum Nat Hist, Dept Bot, Chicago, IL 60605 USA
[3] Univ Guelph, Dept Mol Biol & Genet, Guelph, ON N1G 2W1, Canada
[4] Univ Calif Berkeley, Univ Herbarium, Berkeley, CA 94720 USA
关键词
divergence times; Equisetum; fossil record; horsetails; likelihood ratio test; molecular clock; morphological character evolution; penalized likelihood; phylogeny;
D O I
10.1086/376817
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Equisetum is a small and morphologically distinct genus with a rich fossil record. Two subgenera have been recognized based principally on stomatal position and stem branching: subg. Equisetum (eight species; superficial stomates; stems branched) and subg. Hippochaete (seven species; sunken stomates; stems generally unbranched). Prior attempts at understanding Equisetum systematics, phylogeny, and character evolution have been hampered by the high degree of morphological plasticity in the genus as well as by frequent hybridization among members within each subgenus. We present the first explicit phylogenetic study of Equisetum, including all 15 species and two samples of one widespread hybrid, Equisetum X ferrissii, based on a combined analysis of two chloroplast markers, rbcL and trnL-F. Our robustly supported phylogeny identifies two monophyletic clades corresponding to the two subgenera recognized by earlier workers. The phylogenetic placement of Equisetum bogotense, however, is ambiguous. In maximum likelihood analyses, it allies with subg. Hippochaete as the most basal member, while maximum parsimony places it as sister to the rest of the genus. A consensus phylogeny from the two analyses is presented as a basal trichotomy (E. bogotense, subg. Hippochaete, subg. Equisetum), and morphological character evolution is discussed. We detected rate heterogeneity in the rbcL locus between the two subgenera that can be attributed to an increased rate of nucleotide substitution (trans-versions) in subg. Hippochaete. We calculated molecular-based age estimates using the penalized likelihood approach, which accounts for rate heterogeneity and does not assume a molecular clock. The Equisetum crown group appears to have diversified in the early Cenozoic, whereas the Equisetaceae total group is estimated to have a Paleozoic origin. These molecular-based age estimates are in remarkable agreement with current interpretations of the fossil record.
引用
收藏
页码:737 / 751
页数:15
相关论文
共 72 条