Quantum repeaters based on atomic ensembles and linear optics

被引:1511
作者
Sangouard, Nicolas [1 ,2 ]
Simon, Christoph [1 ,3 ,4 ]
de Riedmatten, Hugues [1 ,5 ,6 ]
Gisin, Nicolas [1 ]
机构
[1] Univ Geneva, Appl Phys Grp, CH-1211 Geneva 4, Switzerland
[2] Univ Paris 07, CNRS, Lab Mat & Phenomenes Quant, UMR 7162, F-75013 Paris, France
[3] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N IN4, Canada
[4] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N IN4, Canada
[5] ICFO Inst Photon Sci, Barcelona 08860, Spain
[6] ICREA, Barcelona 08015, Spain
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SINGLE-PHOTON SOURCE; ENTANGLEMENT PURIFICATION; DOWN-CONVERSION; TELECOM FIBER; STATE; LIGHT; MEMORY; COMMUNICATION; TELEPORTATION;
D O I
10.1103/RevModPhys.83.33
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here the theoretical and experimental status quo of this very active field are reviewed. The potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.
引用
收藏
页码:33 / 80
页数:48
相关论文
共 235 条
[21]   Frequency mixing using electromagnetically induced transparency in cold atoms [J].
Braje, DA ;
Balic, V ;
Goda, S ;
Yin, GY ;
Harris, SE .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :183601-1
[22]   Hybrid Long-Distance Entanglement Distribution Protocol [J].
Brask, J. B. ;
Rigas, I. ;
Polzik, E. S. ;
Andersen, U. L. ;
Sorensen, A. S. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)
[23]   Fast entanglement distribution with atomic ensembles and fluorescent detection [J].
Brask, J. B. ;
Jiang, L. ;
Gorshkov, A. V. ;
Vuletic, V. ;
Sorensen, A. S. ;
Lukin, M. D. .
PHYSICAL REVIEW A, 2010, 81 (02)
[24]   Memory imperfections in atomic-ensemble-based quantum repeaters [J].
Brask, Jonatan Bohr ;
Sorensen, Anders Sondberg .
PHYSICAL REVIEW A, 2008, 78 (01)
[25]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[26]   OBSERVATION OF SIMULTANEITY IN PARAMETRIC PRODUCTION OF OPTICAL PHOTON PAIRS [J].
BURNHAM, DC ;
WEINBERG, DL .
PHYSICAL REVIEW LETTERS, 1970, 25 (02) :84-&
[27]   Creation of entangled states of distant atoms by interference [J].
Cabrillo, C ;
Cirac, JI ;
García-Fernández, P ;
Zoller, P .
PHYSICAL REVIEW A, 1999, 59 (02) :1025-1033
[28]   Quantum telecommunication based on atomic cascade transitions [J].
Chanelière, T ;
Matsukevich, DN ;
Jenkins, SD ;
Kennedy, TAB ;
Chapman, MS ;
Kuzmich, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[29]   Quantum interference of electromagnetic fields from remote quantum memories [J].
Chaneliere, T. ;
Matsukevich, D. N. ;
Jenkins, S. D. ;
Lan, S. -Y. ;
Zhao, R. ;
Kennedy, T. A. B. ;
Kuzmich, A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[30]   Storage and retrieval of single photons transmitted between remote quantum memories [J].
Chanelière, T ;
Matsukevich, DN ;
Jenkins, SD ;
Lan, SY ;
Kennedy, TAB ;
Kuzmich, A .
NATURE, 2005, 438 (7069) :833-836