Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins

被引:192
作者
Prak, Sodana [1 ]
Hem, Sonia [2 ]
Boudet, Julie [1 ]
Viennois, Gaelle [1 ]
Sommerer, Nicolas [2 ]
Rossignol, Michel [2 ]
Maurel, Christophe [1 ]
Santoni, Veronique [1 ]
机构
[1] CNRS, SupAgro INRA, UM2, UMR Biochim & Physiol Mol Plantes 5004, F-34060 Montpellier 1, France
[2] INRA, Lab Prote Fonct, UR 1199, F-34060 Montpellier, France
关键词
D O I
10.1074/mcp.M700566-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Aquaporins form a family of water and solute channel proteins and are present in most living organisms. In plants, aquaporins play an important role in the regulation of root water transport in response to abiotic stresses. In this work, we investigated the role of phosphorylation of plasma membrane intrinsic protein (PIP) aquaporins in the Arabidopsis thaliana root by a combination of quantitative mass spectrometry and cellular biology approaches. A novel phosphoproteomics procedure that involves plasma membrane purification, phosphopeptide enrichment with TiO2 columns, and systematic mass spectrometry sequencing revealed multiple and adjacent phosphorylation sites in the C-terminal tail of several AtPIPs. Six of these sites had not been described previously. The phosphorylation of AtPIP2;1 at two C-terminal sites (Ser(280) and Ser(283)) was monitored by an absolute quantification method and shown to be altered in response to treatments of plants by salt (NaCl) and hydrogen peroxide. The two treatments are known to strongly decrease the water permeability of Arabidopsis roots. To investigate a putative role of Ser(280) and Ser(283) phosphorylation in aquaporin subcellular trafficking, AtPIP2;1 forms mutated at either one of the two sites were fused to the green fluorescent protein and expressed in transgenic plants. Confocal microscopy analysis of these plants revealed that, in resting conditions, phosphorylation of Ser(283) is necessary to target AtPIP2;1 to the plasma membrane. In addition, an NaCl treatment induced an intracellular accumulation of AtPIP2;1 by exerting specific actions onto AtPIP2;1 forms differing in their phosphorylation at Ser(283) to induce their accumulation in distinct intracellular structures. Thus, the present study documents stress-induced quantitative changes in aquaporin phosphorylation and establishes for the first time a link with plant aquaporin subcellular localization.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 47 条
[1]   Whole gene family expression and drought stress regulation of aquaporins [J].
Alexandersson, E ;
Fraysse, L ;
Sjövall-Larsen, S ;
Gustavsson, S ;
Fellert, M ;
Karlsson, M ;
Johanson, U ;
Kjellbom, P .
PLANT MOLECULAR BIOLOGY, 2005, 59 (03) :469-484
[2]   The role of Aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots [J].
Aroca, R ;
Amodeo, G ;
Fernández-Illescas, S ;
Herman, EM ;
Chaumont, F ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 2005, 137 (01) :341-353
[3]   Processive phosphorylation of alternative splicing factor/splicing factor 2 [J].
Aubol, BE ;
Chakrabarti, S ;
Ngo, J ;
Shaffer, J ;
Nolen, B ;
Fu, XD ;
Ghosh, G ;
Adams, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :12601-12606
[4]   Aquaporin localization - how valid are the TIP and PIP labels? [J].
Barkla, BJ ;
Vera-Estrella, R ;
Pantoja, O ;
Kirch, HH ;
Bohnert, HJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (03) :86-88
[5]   Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry [J].
Bennett, KL ;
Stensballe, A ;
Podtelejnikov, AV ;
Moniatte, M ;
Jensen, ON .
JOURNAL OF MASS SPECTROMETRY, 2002, 37 (02) :179-190
[6]   Proteomics by FTICR mass spectrometry: Top down and bottom up [J].
Bogdanov, B ;
Smith, RD .
MASS SPECTROMETRY REVIEWS, 2005, 24 (02) :168-200
[7]   Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression [J].
Boursiac, Y ;
Chen, S ;
Luu, DT ;
Sorieul, M ;
van den Dries, N ;
Maurel, C .
PLANT PHYSIOLOGY, 2005, 139 (02) :790-805
[8]   Regulation of plant aquaporin activity [J].
Chaumont, F ;
Moshelion, M ;
Daniels, MJ .
BIOLOGY OF THE CELL, 2005, 97 (10) :749-764
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling [J].
Daniels, MJ ;
Yeager, M .
BIOCHEMISTRY, 2005, 44 (44) :14443-14454