A spectrum from pure post-spike effects to synchrony effects in spike-triggered averages of electromyographic activity during skilled finger movements

被引:35
作者
Schieber, MH
Rivlis, G
机构
[1] Univ Rochester, Med Ctr, Sch Med & Dent, Dept Neurol, Rochester, NY 14642 USA
[2] Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA
关键词
D O I
10.1152/jn.00007.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
During individuated finger movements, a high proportion of synchrony effects was found in spike-triggered averages (SpikeTAs) of rectified electromyographic activity aligned on the spikes discharged by primary motor cortex (M1) neurons. Because synchrony effects can be produced even if the trigger neuron itself provides no direct synaptic connections to motoneurons, such nonoscillatory synchrony effects often are discounted when considering control of motoneuron pools. We therefore examined the distinctions between pure postspike effects and synchrony effects. The criteria usually applied to distinguish pure and synchrony effects - onset latency and peak width - failed to separate the present SpikeTA effects objectively into distinct subpopulations. Synchrony effects generally were larger than pure effects. Many M1 neurons produced pure effects in some muscles while producing synchrony effects in others. M1 neurons producing no effects, only pure effects, only synchrony effects, or both pure and synchrony effects did not fall into different groups based on discharge characteristics during finger movements. Nor were neurons producing different types of SpikeTA effects segregated spatially in M1. These observations suggest that neurons producing pure and synchrony SpikeTA effects come from similar M1 populations. We discuss potential mechanisms that might have produced a continuous spectrum of variation from pure to synchrony effects in the present monkeys. Although synchrony effects cannot be taken as evidence of mono- or disynaptic connections from the recorded neuron to the motoneuron pool, the functional linkages indicated by synchrony effects represent a substantial fraction of M1 input to motoneuron pools during skilled, individuated finger movements.
引用
收藏
页码:3325 / 3341
页数:17
相关论文
共 51 条
[11]  
DAVIDSON AG, 2004, SOC NEUR ABSTR
[12]   Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements [J].
Donoghue, JP ;
Sanes, JN ;
Hatsopoulos, NG ;
Gaál, G .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (01) :159-173
[13]   MOTOR CORTICAL ACTIVITY DURING VOLUNTARY GAIT MODIFICATIONS IN THE CAT .1. CELLS RELATED TO THE FORELIMBS [J].
DREW, T .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 70 (01) :179-199
[14]   POSTSPIKE FACILITATION OF FORELIMB MUSCLE-ACTIVITY BY PRIMATE CORTICOMOTONEURONAL CELLS [J].
FETZ, EE ;
CHENEY, PD .
JOURNAL OF NEUROPHYSIOLOGY, 1980, 44 (04) :751-772
[15]   RESPONSE PATTERNS AND POSTSPIKE EFFECTS OF PERIPHERAL AFFERENTS IN DORSAL-ROOT GANGLIA OF BEHAVING MONKEYS [J].
FLAMENT, D ;
FORTIER, PA ;
FETZ, EE .
JOURNAL OF NEUROPHYSIOLOGY, 1992, 67 (04) :875-889
[16]   MORPHOLOGY OF PYRAMIDAL NEURONS IN MONKEY MOTOR CORTEX AND THE SYNAPTIC ACTIONS OF THEIR INTRACORTICAL AXON COLLATERALS [J].
GHOSH, S ;
PORTER, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 400 :593-&
[17]   Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current [J].
Hultborn, H ;
Denton, ME ;
Wienecke, J ;
Nielsen, JB .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 552 (03) :945-952
[18]   PROPERTIES OF PYRAMIDAL TRACT NEURON SYSTEM WITHIN A FUNCTIONALLY DEFINED SUBREGION OF PRIMATE MOTOR CORTEX [J].
HUMPHREY, DR ;
CORRIE, WS .
JOURNAL OF NEUROPHYSIOLOGY, 1978, 41 (01) :216-243
[19]   RELATIONSHIP OF INTRINSIC CONNECTIONS TO FORELIMB MOVEMENT REPRESENTATIONS IN MONKEY MOTOR CORTEX - A CORRELATIVE ANATOMIC AND PHYSIOLOGICAL STUDY [J].
HUNTLEY, GW ;
JONES, EG .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 66 (02) :390-413
[20]   Synchrony between neurons with similar muscle fields in monkey motor cortex [J].
Jackson, A ;
Gee, VJ ;
Baker, SN ;
Lemon, RN .
NEURON, 2003, 38 (01) :115-125