Li-ion battery materials: present and future

被引:5564
作者
Nitta, Naoki [1 ]
Wu, Feixiang [1 ,2 ]
Lee, Jung Tae [1 ]
Yushin, Gleb [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
SOLID-ELECTROLYTE-INTERPHASE; LITHIUM VANADIUM FLUOROPHOSPHATE; SPINEL LIMN2O4 NANOWIRES; HIGH-CAPACITY ANODES; HIGH-ENERGY CATHODE; X-RAY-DIFFRACTION; OF-THE-ART; HIGH-POWER; ELECTROCHEMICAL PERFORMANCE; GRAPHENE COMPOSITE;
D O I
10.1016/j.mattod.2014.10.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This review covers key technological developments and scientific challenges for a broad range of Li-ion battery electrodes. Periodic table and potential/capacity plots are used to compare many families of suitable materials. Performance characteristics, current limitations, and recent breakthroughs in the development of commercial intercalation materials such as lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), lithium nickel cobalt aluminum oxide (NCA), lithium iron phosphate (LFP), lithium titanium oxide (LTO) and others are contrasted with that of conversion materials, such as alloying anodes (Si, Ge, Sn, etc.), chalcogenides (S, Se, Te), and metal halides (F, Cl, Br, I). New polyanion cathode materials are also discussed. The cost, abundance, safety, Li and electron transport, volumetric expansion, material dissolution, and surface reactions for each type of electrode materials are described. Both general and specific strategies to overcome the current challenges are covered and categorized.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 259 条
[11]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[12]  
Armstrong AR, 2011, NAT MATER, V10, P223, DOI [10.1038/nmat2967, 10.1038/NMAT2967]
[13]   Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J].
Armstrong, AR ;
Bruce, PG .
NATURE, 1996, 381 (6582) :499-500
[14]  
Aurbach D, 1999, ELECTROCHIM ACTA, V45, P1
[15]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[16]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[17]   Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices [J].
Badway, F. ;
Mansour, A. N. ;
Pereira, N. ;
Al-Sharab, J. F. ;
Cosandey, F. ;
Plitz, I. ;
Amatucci, G. G. .
CHEMISTRY OF MATERIALS, 2007, 19 (17) :4129-4141
[18]   Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study [J].
Baggetto, Loic ;
Notten, Peter H. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A169-A175
[19]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[20]   Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F [J].
Barker, J ;
Gover, RKB ;
Burns, P ;
Bryan, A ;
Saidi, MY ;
Swoyer, JL .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :516-520