Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area

被引:22
作者
Beretta, E
Mukherjee, A
Vogelius, M
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2001年 / 52卷 / 04期
关键词
inverse conductivity problem; thin imperfections; asymptotic formulas;
D O I
10.1007/PL00001561
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive asymptotic formulas for two dimensional steady state voltage potentials associated with thin, "curve-like" conductivity imperfections. Our derivation is formal, and based on asymptotic matching of terms in an appropriate set of integral equations, In combination with the formulas (rigorously) derived in [3] for imperfections of small diameter, these new formulas cover the generic imperfections of small area in two dimensions.
引用
收藏
页码:543 / 572
页数:30
相关论文
共 12 条
[1]   LOCAL UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
ALESSANDRINI, G ;
ISAKOV, V ;
POWELL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3031-3041
[2]  
[Anonymous], INVERSE PROBLEMS PAR
[3]  
Atkinson KE., 1996, NUMERICAL SOLUTION I
[4]   Identification of conductivity imperfections of small diameter by boundary measurements. Continous dependence and computational reconstruction [J].
Cedio-Fengya, DJ ;
Moskow, S ;
Vogelius, MS .
INVERSE PROBLEMS, 1998, 14 (03) :553-595
[5]  
COLTON D, 1992, INTEGRAL EQUATION ME
[6]  
Folland G., 1976, INTRO PARTIAL DIFFER, DOI DOI 10.1515/9780691213033
[7]   ON THE UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
FRIEDMAN, A ;
ISAKOV, V .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :563-579
[8]   IDENTIFICATION OF SMALL INHOMOGENEITIES OF EXTREME CONDUCTIVITY BY BOUNDARY MEASUREMENTS - A THEOREM ON CONTINUOUS DEPENDENCE [J].
FRIEDMAN, A ;
VOGELIUS, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 105 (04) :299-326
[9]  
IKEHATA M, IN PRESS J INVERSE I
[10]   The layer potential technique for the inverse conductivity problem [J].
Kang, H ;
Seo, JK .
INVERSE PROBLEMS, 1996, 12 (03) :267-278