A tutorial on the cross-entropy method

被引:2101
作者
De Boer, PT
Kroese, DP
Mannor, S
Rubinstein, RY
机构
[1] Univ Twente, Dept Elect Engn Math & Comp Sci, NL-7500 AE Enschede, Netherlands
[2] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[3] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
[4] Technion Israel Inst Technol, Dept Ind Engn, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
cross-entropy method; Monte-Carlo simulation; randomized optimization; machine learning; rare events;
D O I
10.1007/s10479-005-5724-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications in combinatorial optimization and machine learning.
引用
收藏
页码:19 / 67
页数:49
相关论文
共 50 条
  • [41] Rubinstein R. Y., 2004, CROSS ENTROPY METHOD, DOI 10.1007/978-1-4757-4321-0
  • [42] Optimization of computer simulation models with rare events
    Rubinstein, RY
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 99 (01) : 89 - 112
  • [43] Rubinstein RY, 2001, APPL OPTIMIZAT, V54, P303
  • [44] Rubinstein RY., 1998, Modern simulation and modeling
  • [45] Rubinstein RY, 1993, Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method, V13
  • [46] Nested partitions method for global optimization
    Shi, LY
    Olafsson, S
    [J]. OPERATIONS RESEARCH, 2000, 48 (03) : 390 - 407
  • [47] Sutton RS, 2000, ADV NEUR IN, V12, P1057
  • [48] VOUDOURIS C, 2003, BT TECHNOL J, V16, P46
  • [49] WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698
  • [50] Webb A.R., 1999, STAT PATTERN RECOGNI