The inhibitors of apoptosis (IAPs) as cancer targets

被引:520
作者
Hunter, Allison M.
LaCasse, Eric C.
Korneluk, Robert G.
机构
[1] Childrens Hosp Eastern Ontario, Apoptosis Res Ctr, Ottawa, ON K1H 8L1, Canada
[2] Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada
基金
加拿大健康研究院;
关键词
apoptosis; cancer; IAPs; caspases; Smac; NFkB; TNFR; TRAF; knock out mice;
D O I
10.1007/s10495-007-0087-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apoptosis has been accepted as a fundamental component in the pathogenesis of cancer, in addition to other human diseases including neurodegeneration, coronary disease and diabetes. The origin of cancer involves deregulated cellular proliferation and the suppression of apoptotic processes, ultimately leading to tumor establishment and growth. Several lines of evidence point toward the IAP family of proteins playing a role in oncogenesis, via their effective suppression of apoptosis. The central mechanisms of IAP apoptotic suppression appear to be through direct caspase and pro-caspase inhibition (primarily caspase 3 and 7) and modulation of, and by, the transcription factor NF-kappaB. Thus, when the IAPs are over-expressed or over-active, as is the case in many cancers, cells are no longer able to die in a physiologically programmed fashion and become increasingly resistant to standard chemo- and radiation therapies. To date several approaches have been taken to target and eliminate IAP function in an attempt to re-establish sensitivity, reduce toxicity, and improve efficacy of cancer treatment. In this review, we address IAP proteins as therapeutic targets for the treatment of cancer and emphasize the importance of novel therapeutic approaches for cancer therapy. Novel targets of IAP function are being identified and include gene therapy strategies and small molecule inhibitors that are based on endogenous IAP antagonists. As well, molecular mechanistic approaches, such as RNAi to deplete IAP expression, are in development.
引用
收藏
页码:1543 / 1568
页数:26
相关论文
共 230 条
  • [91] Involvement of two NF-κB binding elements in tumor necrosis factor α, CD40, and Epstein-Barr virus latent membrane protein 1-mediated induction of the cellular inhibitor of apoptosis protein 2 gene
    Hong, SY
    Yoon, WH
    Park, JH
    Kang, SG
    Ahn, JH
    Lee, TH
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (24) : 18022 - 18028
  • [92] Anti-apoptotic action of APl2-MALT1 fusion protein involved in t(11;18)(q21;q21) MALT lymphoma
    Hosokawa, Y
    [J]. APOPTOSIS, 2005, 10 (01) : 25 - 34
  • [93] Hu YP, 2003, CLIN CANCER RES, V9, P2826
  • [94] Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac
    Huang, YH
    Rich, RL
    Myszka, DG
    Wu, H
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) : 49517 - 49522
  • [95] Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain
    Huang, YH
    Park, YC
    Rich, RL
    Segal, D
    Myszka, DG
    Wu, H
    [J]. CELL, 2001, 104 (05) : 781 - 790
  • [96] Imoto I, 2001, CANCER RES, V61, P6629
  • [97] Islam A, 2000, MED PEDIATR ONCOL, V35, P550, DOI 10.1002/1096-911X(20001201)35:6<550::AID-MPO12>3.0.CO
  • [98] 2-Y
  • [99] Antisense therapy for cancer - the time of truth
    Jansen, B
    Zangemeister-Wittke, U
    [J]. LANCET ONCOLOGY, 2002, 3 (11) : 672 - 683
  • [100] Participation of survivin in mitotic and apoptotic activities of normal and tumor-derived cells
    Jiang, XY
    Wilford, C
    Duensing, S
    Munger, K
    Jones, G
    Jones, D
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2001, 83 (02) : 342 - 354