Giant Faraday rotation in single- and multilayer graphene

被引:351
作者
Crassee, Iris [1 ]
Levallois, Julien [1 ]
Walter, Andrew L. [2 ,3 ]
Ostler, Markus [4 ]
Bostwick, Aaron [3 ]
Rotenberg, Eli [3 ]
Seyller, Thomas [4 ]
van der Marel, Dirk [1 ]
Kuzmenko, Alexey B. [1 ]
机构
[1] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland
[2] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany
[3] EO Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany
基金
瑞士国家科学基金会;
关键词
CONDUCTIVITY; GAS;
D O I
10.1038/NPHYS1816
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday(1), is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases(2). As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films-the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon-graphene-turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping(3), this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 32 条
[1]   Dynamical conductivity and zero-mode anomaly in honeycomb lattices [J].
Ando, T ;
Zheng, YS ;
Suzuura, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (05) :1318-1324
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Observation of Plasmarons in Quasi-Freestanding Doped Graphene [J].
Bostwick, Aaron ;
Speck, Florian ;
Seyller, Thomas ;
Horn, Karsten ;
Polini, Marco ;
Asgari, Reza ;
MacDonald, Allan H. ;
Rotenberg, Eli .
SCIENCE, 2010, 328 (5981) :999-1002
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[6]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[7]  
Faraday M., 1846, PHIL T R SOC, V136, P104
[8]   Parity-odd effects and polarization rotation in graphene [J].
Fialkovsky, I. V. ;
Vassilevich, D. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Magneto-optical conductivity in graphene [J].
Gusynin, V. P. ;
Sharapov, S. G. ;
Carbotte, J. P. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (02)