Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models

被引:98
作者
Kneller, GR [1 ]
机构
[1] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France
[2] CNRS, Ctr Biophys Mol, F-45071 Orleans, France
关键词
D O I
10.1039/b502040a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present article gives an overview of analytical and simulation approaches to describe the relaxation dynamics of proteins. Particularly emphasised are recent developments of theoretical models, such as fractional Brownian dynamics. The latter connects dynamical events seen on the pico- to nanoscond time scale, accessible to quasielastic neutron scattering, and functional dynamics of proteins on much longer time scales.
引用
收藏
页码:2641 / 2655
页数:15
相关论文
共 64 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Allen M. P., 2009, Computer Simulation of Liquids
[3]  
[Anonymous], 1955, HIGHER TRANSCENDENTA
[4]  
[Anonymous], APPL FRACTIONAL CALC
[5]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[6]   Time-dependent fluctuations in single molecule spectroscopy: A generalized Wiener-Khintchine approach [J].
Barkai, E ;
Jung, Y ;
Silbey, R .
PHYSICAL REVIEW LETTERS, 2001, 87 (20) :207403-1
[7]   Neutron frequency windows and the protein dynamical transition [J].
Becker, T ;
Hayward, JA ;
Finney, JL ;
Daniel, RM ;
Smith, JC .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :1436-1444
[8]  
Bee M., 1988, QUASIELASTIC NEUTRON
[9]   General susceptibility functions for relaxations in disordered systems [J].
Bergman, R .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (03) :1356-1365
[10]  
Boon J. P., 1980, MOL HYDRODYNAMICS