Determination of Mandelbrot set's hyperbolic component centres

被引:6
作者
Alvarez, G [1 ]
Romera, M [1 ]
Pastor, G [1 ]
Montoya, F [1 ]
机构
[1] CSIC, Inst Fis Aplicada, Madrid 28006, Spain
关键词
D O I
10.1016/S0960-0779(98)00046-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we present a very fast and parsimonious method to calculate the centre coordinates of hyperbolic components in the Mandelbrot set. The method we use constitutes an extension for the complex domain of the one developed by Myrberg for the real mag x bar right arrow x(2)-p , in which, given the symbolic sequence of a superstable orbit, the parameter value originating such a superstable orbit is worked out. We show that, when dealing with complex domain sequences, some of the solutions obtained correspond to the centres of the Mandelbrot set's hyperbolic components, while some others do not exist. (C) 1998 Elsevier Science Ltd. Air rights reserved.
引用
收藏
页码:1997 / 2005
页数:9
相关论文
共 16 条
[1]  
Branner B., 1989, Chaos and Fractals: The Mathematics Behind the Computer Graphics (Proceedings of Symposia in Applied Mathematics, 39), VVolume 39, P75, DOI 10.1090/psapm/039
[2]  
DOUADY A, 1982, CR ACAD SCI I-MATH, V294, P123
[3]  
HAO BL, 1989, INT J MOD PHYS B, V3, P235
[4]  
Hubbard J. H., 1994, COMPLEX DYNAMICS MAT, V49, P155
[6]   COUNTING STABLE CYCLES IN UNIMODAL ITERATIONS [J].
LUTZKY, M .
PHYSICS LETTERS A, 1988, 131 (4-5) :248-250
[7]  
Metropolis N., 1973, Journal of Combinatorial Theory, Series A, V15, P25, DOI 10.1016/0097-3165(73)90033-2
[8]  
MYRBERG PJ, 1963, AN AC SCI FEN A, V336
[9]   Harmonic structure of one-dimensional quadratic maps [J].
Pastor, G ;
Romera, M ;
Montoya, F .
PHYSICAL REVIEW E, 1997, 56 (02) :1476-1483
[10]   An approach to the ordering of one-dimensional quadratic maps [J].
Pastor, G ;
Romera, M ;
Montoya, F .
CHAOS SOLITONS & FRACTALS, 1996, 7 (04) :565-584