Presynaptic kainate receptors regulate spinal sensory transmission

被引:127
作者
Kerchner, GA
Wilding, TJ
Li, P
Zhuo, M
Huettner, JE
机构
[1] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Pain Ctr, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Anesthesiol, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
关键词
kainate; presynaptic; ATPA; glutamate receptor subunit 5; glutamate; autoreceptor; excitatory synaptic transmission; NMDA;
D O I
10.1523/JNEUROSCI.21-01-00059.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Small diameter dorsal root ganglion (DRG) neurons, which include cells that transmit nociceptive information into the spinal cord, are known to express functional kainate receptors. It is well established that exposure to kainate will depolarize C-fiber afferents arising from these cells. Although the role of kainate receptors on sensory afferents is unknown, it has been hypothesized that presynaptic kainate receptors may regulate glutamate release in the spinal cord. Here we show that kainate, applied at low micromolar concentrations in the presence of the AMPA-selective antagonist (RS)-4-(4-aminophenyl)-1,2-dihydro-1- methyl-2-propyl-carbamoyl-6,7-methylenedioxyphthalazine, suppressed spontaneous NMDA receptor-mediated EPSCs in cultures of spinal dorsal horn neurons. In addition, kainate suppressed EPSCs in dorsal horn neurons evoked by stimulation of synaptically coupled DRG cells in DRG-dorsal horn neuron cocultures. Interestingly, although the glutamate receptor subunit 5-selective kainate receptor agonist (RS)-2-alpha -amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) (2 muM) was able to suppress DRG-dorsal horn synaptic transmission to a similar extent as kainate (10 muM), it had no effect on excitatory transmission between dorsal horn neurons. Agonist applications revealed a striking difference between kainate receptors expressed by DRG and dorsal horn neurons. Whereas DRG cell kainate receptors were sensitive to both kainate and ATPA, most dorsal horn neurons responded only to kainate. Finally, in recordings from dorsal horn neurons in spinal slices, kainate and ATPA were able to suppress NMDA and AMPA receptor-mediated EPSCs evoked by dorsal root fiber stimulation. Together, these data suggest that kainate receptor agonists, acting at a presynaptic locus, can reduce glutamate release from primary afferent sensory synapses.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 39 条
[1]   THE PRIMARY AFFERENT DEPOLARIZING ACTION OF KAINATE IN THE RAT [J].
AGRAWAL, SG ;
EVANS, RH .
BRITISH JOURNAL OF PHARMACOLOGY, 1986, 87 (02) :345-355
[2]  
AULT B, 1993, J PHARMACOL EXP THER, V265, P927
[3]   PRESYNAPTIC MECHANISM FOR LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BEKKERS, JM ;
STEVENS, CF .
NATURE, 1990, 346 (6286) :724-729
[4]   Kainate receptors are involved in synaptic plasticity [J].
Bortolotto, ZA ;
Clarke, VRJ ;
Delany, CM ;
Parry, MC ;
Smolders, I ;
Vignes, M ;
Ho, KH ;
Miu, P ;
Brinton, BT ;
Fantaske, R ;
Ogden, A ;
Gates, M ;
Ornstein, PL ;
Lodge, D ;
Bleakman, D ;
Collingridge, GL .
NATURE, 1999, 402 (6759) :297-301
[5]  
Chergui K, 2000, J NEUROSCI, V20, P2175
[6]   Regulation of glutamate release by presynaptic kainate receptors in the hippocampus [J].
Chittajallu, R ;
Vignes, M ;
Dev, KK ;
Barnes, JM ;
Collingridge, GL ;
Henley, JM .
NATURE, 1996, 379 (6560) :78-81
[7]   A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission [J].
Clarke, VRJ ;
Ballyk, BA ;
Hoo, KH ;
Mandelzys, A ;
Pellizzari, A ;
Bath, CP ;
Thomas, J ;
Sharpe, EF ;
Davies, CH ;
Ornstein, PL ;
Schoepp, DD ;
Kamboj, RK ;
Collingridge, GL ;
Lodge, D ;
Bleakman, D .
NATURE, 1997, 389 (6651) :599-603
[8]   A STATISTICAL TEST FOR DEMONSTRATING A PRESYNAPTIC SITE OF ACTION FOR A MODULATOR OF SYNAPTIC AMPLITUDE [J].
CLEMENTS, JD .
JOURNAL OF NEUROSCIENCE METHODS, 1990, 31 (01) :75-88
[9]   GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells [J].
Cossart, R ;
Esclapez, M ;
Hirsch, JC ;
Bernard, C ;
Ben-Ari, Y .
NATURE NEUROSCIENCE, 1998, 1 (06) :470-478
[10]  
Cui CH, 1999, J NEUROSCI, V19, P8281