Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection

被引:408
作者
Hausenloy, Derek J. [1 ]
Yellon, Derek M. [1 ]
机构
[1] UCL Hosp, Sch Med, Hatter Cardiovasc Inst, London WC1E 6HX, England
关键词
reperfusion injury; protein kinases Akt; Erk1/2; myocardial infarction;
D O I
10.1007/s10741-007-9026-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Following an acute myocardial infarction (AMI), early coronary artery reperfusion remains the most effective means of limiting the eventual infarct size. The resultant left ventricular systolic function is a critical determinant of the patient's clinical outcome. Despite current myocardial reperfusion strategies and ancillary antithrombotic and antiplatelet therapies, the morbidity and mortality of an AMI remain significant, with the number of patients developing cardiac failure increasing, necessitating the development of novel strategies for cardioprotection which can be applied at the time of myocardial reperfusion to reduce myocardial infarct size. In this regard, the Reperfusion Injury Salvage Kinase (RISK) Pathway, the term given to a group of pro-survival protein kinases (including Akt and Erk1/2), which confer powerful cardioprotection, when activated specifically at the time of myocardial reperfusion, provides an amenable pharmacological target for cardioprotection. Preclinical studies have demonstrated that an increasing number of agents including insulin, erythropoietin, adipocytokines, adenosine, volatile anesthetics natriuretic peptides and 'statins', when administered specifically at the time of myocardial reperfusion, reduce myocardial infarct size through the activation of the RISK pathway. This recruits various survival pathways that include the inhibition of mitochondrial permeability transition pore opening. Interestingly, the RISK pathway is also recruited by the cardioprotective phenomena of ischemic preconditioning (IPC) and postconditioning (IPost), enabling the use of pharmacological agents which target the RISK pathway, to be used at the time of myocardial reperfusion, as pharmacological mimetics of IPC and IPost. This article reviews the origins and evolution of the RISK pathway, as part of a potential common cardioprotective pathway, which can be activated by an ever-expanding list of agents administered at the time of myocardial reperfusion, as well as by IPC and IPost. Preliminary clinical studies have demonstrated myocardial protection with several of these pharmacological activators of the RISK pathway in AMI patients undergoing PCI. Through the use of appropriately designed clinical trials, guided by the wealth of existing preclinical data, the administration of pharmacological agents which are known to activate the RISK pathway, when applied as adjuvant therapy to current myocardial reperfusion strategies for patients presenting with an AMI, should lead to improved clinical outcomes in this patient group.
引用
收藏
页码:217 / 234
页数:18
相关论文
共 183 条
[41]   Erythropoietin therapy for acute stroke is both safe and beneficial [J].
Ehrenreich, H ;
Hasselblatt, M ;
Dembowski, C ;
Cepek, L ;
Lewczuk, P ;
Stiefel, M ;
Rustenbeck, HH ;
Breiter, N ;
Jacob, S ;
Knerlich, F ;
Bohn, M ;
Poser, W ;
Rüther, E ;
Kochen, M ;
Gefeller, O ;
Gleiter, C ;
Wessel, TC ;
De Ryck, M ;
Itri, L ;
Prange, H ;
Cerami, A ;
Brines, M ;
Sirén, AL .
MOLECULAR MEDICINE, 2002, 8 (08) :495-505
[42]   Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury in spontaneously hypertensive rats (SHR) [J].
Fantinelli, Juliana C. ;
Mosca, Susana M. .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2007, 296 (1-2) :45-51
[43]   Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning - Role of protein kinase B/Akt signaling [J].
Feng, JH ;
Fischer, G ;
Lucchinetti, E ;
Zhu, M ;
Bestmann, L ;
Jegger, D ;
Arras, M ;
Pasch, T ;
Perriard, JC ;
Schaub, MC ;
Zaugg, M .
ANESTHESIOLOGY, 2006, 104 (05) :1004-1014
[44]   Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3β [J].
Feng, JH ;
Lucchinetti, E ;
Ahuja, P ;
Pasch, T ;
Perriard, JC ;
Zaugg, M .
ANESTHESIOLOGY, 2005, 103 (05) :987-995
[45]   Apoptosis is initiated by myocardial ischemia and executed during reperfusion [J].
Freude, B ;
Masters, TN ;
Robicsek, F ;
Fokin, A ;
Kostin, S ;
Zimmermann, R ;
Ullmann, C ;
Lorenz-Meyer, S ;
Schaper, J .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2000, 32 (02) :197-208
[46]  
Fryer RM, 2001, J PHARMACOL EXP THER, V296, P642
[47]   Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium [J].
Fryer, RM ;
Patel, HH ;
Hsu, AK ;
Gross, GJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2001, 281 (03) :H1184-H1192
[48]   Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart [J].
Fujio, Y ;
Nguyen, T ;
Wencker, D ;
Kitsis, RN ;
Walsh, K .
CIRCULATION, 2000, 101 (06) :660-667
[49]   Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning [J].
Fujita, Masashi ;
Asanuma, Hiroshi ;
Hirata, Akio ;
Wakeno, Masakatsu ;
Takahama, Hiroyuki ;
Sasaki, Hideyuki ;
Kim, Jiyoong ;
Takashima, Seiji ;
Tsukamoto, Osamu ;
Minamino, Tetsuo ;
Shinozaki, Yoshiro ;
Tomoike, Hitonobu ;
Hori, Masatsugu ;
Kitakaze, Masafumi .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 292 (04) :H2004-H2008
[50]   Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion -: The roles of PI3-kinase, akt, and endothelial nitric oxide synthase phosphorylation [J].
Gao, F ;
Gao, E ;
Yue, TL ;
Ohlstein, EH ;
Lopez, BL ;
Christopher, TA ;
Ma, XL .
CIRCULATION, 2002, 105 (12) :1497-1502