Entanglement in frequency standards and quantum information theory

被引:6
作者
Huelga, SF [1 ]
Knight, PL
Macchiavello, C
Plenio, MB
Vedral, V
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BZ, England
[2] Univ Pavia, Dipartimento Fis A Volta, I-27100 Pavia, Italy
[3] Ctr Quantum Computat, Clarendon Lab, Oxford OX1 3PU, England
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 1998年 / 67卷 / 06期
关键词
D O I
10.1007/s003400050572
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entanglement is a key property of quantum information theory. Here we describe ways to quantify the amount of entanglement. We point out the statistical interpretation of these entanglement measures and some connections between entanglement transformations and thermodynamics. We also describe ways how entanglement can be applied in quantum optical applications such as optical frequency standards.
引用
收藏
页码:723 / 732
页数:10
相关论文
共 34 条
[1]   Stabilization of quantum computations by symmetrization [J].
Barenco, A ;
Berthiaume, A ;
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1541-1557
[2]   ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS [J].
BELL, JS .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :447-&
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]  
BENNETT CH, QUANTPH9804053 LANL
[6]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[7]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[8]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[9]   A PRIORI PROBABILITY AND LOCALIZED OBSERVERS [J].
DONALD, MJ .
FOUNDATIONS OF PHYSICS, 1992, 22 (09) :1111-1172
[10]   ON THE RELATIVE ENTROPY [J].
DONALD, MJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (01) :13-34