Quenched finite volume logarithms

被引:44
作者
Damgaard, PH [1 ]
机构
[1] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1016/S0550-3213(01)00269-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Quenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume V. We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the distributions of the lowest Dirac operator eigenvalues. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:162 / 176
页数:15
相关论文
共 44 条
[1]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[2]  
AKEMANN G, HEPTH0011072
[3]   Random-matrix universality in the small-eigenvalue spectrum of the lattice Dirac operator [J].
Berbenni-Bitsch, ME ;
Jackson, AD ;
Meyer, S ;
Schafer, A ;
Verbaarschot, JJM ;
Wettig, T .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 :820-822
[4]   Random matrix theory, chiral perturbation theory, and lattice data [J].
Berbenni-Bitsch, ME ;
Göckeler, M ;
Hehl, H ;
Meyer, S ;
Rakow, PEL ;
Schäfer, A ;
Wettig, T .
PHYSICS LETTERS B, 1999, 466 (2-4) :293-300
[5]   PARTIALLY QUENCHED GAUGE-THEORIES AND AN APPLICATION TO STAGGERED FERMIONS [J].
BERNARD, CW ;
GOLTERMAN, MFL .
PHYSICAL REVIEW D, 1994, 49 (01) :486-494
[6]   CHIRAL PERTURBATION-THEORY FOR THE QUENCHED APPROXIMATION OF QCD [J].
BERNARD, CW ;
GOLTERMAN, MFL .
PHYSICAL REVIEW D, 1992, 46 (02) :853-857
[7]   Finite-volume two-pion energies and scattering in the quenched approximation [J].
Bernard, CW ;
Golterman, MFL .
PHYSICAL REVIEW D, 1996, 53 (01) :476-484
[8]   Quenched chiral perturbation theory to one loop [J].
Colangelo, G ;
Pallante, E .
NUCLEAR PHYSICS B, 1998, 520 (1-2) :433-468
[9]   The replica limit of unitary matrix integrals [J].
Dalmazi, D ;
Verbaarschot, JJM .
NUCLEAR PHYSICS B, 2001, 592 (03) :419-444
[10]   Topology and the Dirac operator spectrum in finite-volume gauge theories [J].
Damgaard, PH .
NUCLEAR PHYSICS B, 1999, 556 (1-2) :327-349