Quenched finite volume logarithms

被引:44
作者
Damgaard, PH [1 ]
机构
[1] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1016/S0550-3213(01)00269-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Quenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume V. We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the distributions of the lowest Dirac operator eigenvalues. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:162 / 176
页数:15
相关论文
共 44 条
[31]   Smallest Dirac eigenvalue distribution from random matrix theory [J].
Nishigaki, SM ;
Damgaard, PH ;
Wettig, T .
PHYSICAL REVIEW D, 1998, 58 (08)
[32]   From chiral random matrix theory to chiral perturbation theory [J].
Osborn, JC ;
Toublan, D ;
Verbaarschot, JJM .
NUCLEAR PHYSICS B, 1999, 540 (1-2) :317-344
[33]   Physical results from unphysical simulations [J].
Sharpe, S ;
Shoresh, N .
PHYSICAL REVIEW D, 2000, 62 (09) :14
[34]   Enhanced chiral logarithms in partially quenched QCD [J].
Sharpe, SR .
PHYSICAL REVIEW D, 1997, 56 (11) :7052-7058
[35]   CHIRAL LOGARITHMS IN QUENCHED M-PI AND F-PI [J].
SHARPE, SR .
PHYSICAL REVIEW D, 1990, 41 (10) :3233-3240
[36]   QUENCHED CHIRAL LOGARITHMS [J].
SHARPE, SR .
PHYSICAL REVIEW D, 1992, 46 (07) :3146-3168
[37]   Enhanced chiral logarithms in partially quenched QCD (vol 56, pg 7052, 1997) [J].
Sharpe, SR .
PHYSICAL REVIEW D, 2000, 62 (09) :1
[38]   RANDOM-MATRIX THEORY AND SPECTRAL SUM-RULES FOR THE DIRAC OPERATOR IN QCD [J].
SHURYAK, EV ;
VERBAARSCHOT, JJM .
NUCLEAR PHYSICS A, 1993, 560 (01) :306-320
[39]   VACUUM FIELDS IN THE SCHWINGER MODEL [J].
SMILGA, AV .
PHYSICAL REVIEW D, 1992, 46 (12) :5598-5606
[40]   Microscopic spectrum of the QCD Dirac operator in three dimensions [J].
Szabo, RJ .
NUCLEAR PHYSICS B, 2001, 598 (1-2) :309-347