Smallest Dirac eigenvalue distribution from random matrix theory

被引:84
作者
Nishigaki, SM [1 ]
Damgaard, PH
Wettig, T
机构
[1] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[3] Tech Univ Munich, Inst Theoret Phys, D-85747 Garching, Germany
关键词
D O I
10.1103/PhysRevD.58.087704
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive the hole probability and the distribution of the smallest eigenvalue of chiral Hermitian random matrices corresponding to Dirac operators coupled to massive quarks in QCD. They are expressed in terms of the QCD partition function in the mesoscopic regime. Their universality is explicitly related to that of the microscopic massive Bessel kernel. [S0556-2821(98)03118-X].
引用
收藏
页数:4
相关论文
共 27 条
[1]   Consistency conditions for finite-volume partition functions [J].
Akemann, G ;
Damgaard, PH .
PHYSICS LETTERS B, 1998, 432 (3-4) :390-396
[2]   Microscopic spectra of Dirac operators and finite-volume partition functions [J].
Akemann, G ;
Damgaard, PH .
NUCLEAR PHYSICS B, 1998, 528 (1-2) :411-431
[3]   Microscopic universality in the spectrum of the lattice Dirac operator [J].
Berbenni-Bitsch, ME ;
Meyer, S ;
Schafer, A ;
Verbaarschot, JJM ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1146-1149
[4]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[5]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[6]   Universal massive spectral correlators and three-dimensional QCD [J].
Damgaard, PH ;
Nishigaki, SM .
PHYSICAL REVIEW D, 1998, 57 (08) :5299-5302
[7]   Universal spectral correlators and massive Dirac operators [J].
Damgaard, PH ;
Nishigaki, SM .
NUCLEAR PHYSICS B, 1998, 518 (1-2) :495-512
[8]   Dirac operator spectra from finite-volume partition functions [J].
Damgaard, PH .
PHYSICS LETTERS B, 1998, 424 (3-4) :322-327
[9]   THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES [J].
FORRESTER, PJ .
NUCLEAR PHYSICS B, 1993, 402 (03) :709-728
[10]   Finite volume partition functions and Itzykson-Zuber integrals [J].
Jackson, AD ;
Sener, MK ;
Verbaarschot, JJM .
PHYSICS LETTERS B, 1996, 387 (02) :355-360