Consistency conditions for finite-volume partition functions

被引:44
作者
Akemann, G
Damgaard, PH
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Niels Bohr Inst, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1016/S0370-2693(98)00665-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using relations from random matrix theory, we derive exact expressions for all n-point spectral correlation functions of Dirac operator eigenvalues in terms of finite-volume partition functions. This is done for both chiral symplectic and chiral unitary random matrix ensembles, which correspond to SU(N-c greater than or equal to 3) gauge theories with N-f fermions in the adjoint and fundamental representations, respectively. In the latter case we infer from this an infinite sequence of consistency conditions that must be satisfied by the corresponding finite-volume partition functions. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:390 / 396
页数:7
相关论文
共 17 条
[1]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[2]  
AKEMANN G, IN PRESS NUCL PHYS B
[3]  
AKEMANN G, HEPTH9801133
[4]  
BERBENNIBITSCH ME, HEPLAT9704018
[5]  
DAMGAARD P, HEPTH9711047
[6]  
DAMGAARD P, HEPTH9711110
[7]  
DAMGAARD PH, HEPTH9711096
[8]  
DAMGAARD PH, HEPTH9711023
[9]   Finite volume partition functions and Itzykson-Zuber integrals [J].
Jackson, AD ;
Sener, MK ;
Verbaarschot, JJM .
PHYSICS LETTERS B, 1996, 387 (02) :355-360
[10]   SPECTRUM OF DIRAC OPERATOR AND ROLE OF WINDING NUMBER IN QCD [J].
LEUTWYLER, H ;
SMILGA, A .
PHYSICAL REVIEW D, 1992, 46 (12) :5607-5632