Smallest Dirac eigenvalue distribution from random matrix theory

被引:84
作者
Nishigaki, SM [1 ]
Damgaard, PH
Wettig, T
机构
[1] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[3] Tech Univ Munich, Inst Theoret Phys, D-85747 Garching, Germany
关键词
D O I
10.1103/PhysRevD.58.087704
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive the hole probability and the distribution of the smallest eigenvalue of chiral Hermitian random matrices corresponding to Dirac operators coupled to massive quarks in QCD. They are expressed in terms of the QCD partition function in the mesoscopic regime. Their universality is explicitly related to that of the microscopic massive Bessel kernel. [S0556-2821(98)03118-X].
引用
收藏
页数:4
相关论文
共 27 条
[21]   SPECTRAL SUM-RULES AND SELBERG INTEGRAL FORMULA [J].
VERBAARSCHOT, J .
PHYSICS LETTERS B, 1994, 329 (2-3) :351-357
[22]   THE SPECTRUM OF THE DIRAC OPERATOR NEAR ZERO VIRTUALITY FOR N(C)=2 AND CHIRAL RANDOM-MATRIX THEORY [J].
VERBAARSCHOT, J .
NUCLEAR PHYSICS B, 1994, 426 (03) :559-574
[23]   SPECTRUM OF THE QCD DIRAC OPERATOR AND CHIRAL RANDOM-MATRIX THEORY [J].
VERBAARSCHOT, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (16) :2531-2533
[24]   SPECTRAL DENSITY OF THE QCD DIRAC OPERATOR NEAR ZERO VIRTUALITY [J].
VERBAARSCHOT, JJM ;
ZAHED, I .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3852-3855
[25]  
WIDOM H, SOLVINT9804005
[26]   Microscopic spectrum of the QCD Dirac operator with finite quark masses [J].
Wilke, T ;
Guhr, T ;
Wettig, T .
PHYSICAL REVIEW D, 1998, 57 (10) :6486-6495
[27]   Random hermitian matrices in an external field [J].
ZinnJustin, P .
NUCLEAR PHYSICS B, 1997, 497 (03) :725-732