The mimetic finite difference method on polygonal meshes for diffusion-type problems

被引:67
作者
Kuznetsov, Y
Lipnikov, K
Shashkov, M
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
diffusion equation; locally conservative method; mimetic discretization;
D O I
10.1007/s10596-004-3771-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal, locally refined and non-matching meshes are demonstrated with numerical experiments.
引用
收藏
页码:301 / 324
页数:24
相关论文
共 23 条
[1]  
[Anonymous], PROGR ELECTROMAGNETI
[2]   Mixed finite element methods on nonmatching multiblock grids [J].
Arbogast, T ;
Cowsar, LC ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1295-1315
[3]  
BERNDT M, 2001, J NUMER MATH, V9, P265
[4]  
BERNDT M, UNPUB SIAM J NUMER A
[5]   A tensor artificial viscosity using a mimetic finite difference algorithm [J].
Campbell, JC ;
Shashkov, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) :739-765
[6]   LOCAL REFINEMENT TECHNIQUES FOR ELLIPTIC PROBLEMS ON CELL-CENTERED GRIDS .1. ERROR ANALYSIS [J].
EWING, RE ;
LAZAROV, RD ;
VASSILEVSKI, PS .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :437-461
[7]   Superconvergence of mixed finite element approximations over quadrilaterals [J].
Ewing, RE ;
Liu, MM ;
Wang, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :772-787
[8]   The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials [J].
Hyman, J ;
Shashkov, M ;
Steinberg, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (01) :130-148
[9]   The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods [J].
Hyman, J ;
Shashkov, M ;
Steinberg, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (12) :1527-1547
[10]   Mimetic finite difference methods for diffusion equations [J].
Hyman, J ;
Morel, J ;
Shashkov, M ;
Steinberg, S .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :333-352