RNASEQR-a streamlined and accurate RNA-seq sequence analysis program

被引:18
作者
Chen, Leslie Y. [1 ]
Wei, Kuo-Chen [2 ,3 ]
Huang, Abner C. -Y. [2 ,3 ,4 ]
Wang, Kai [1 ]
Huang, Chiung-Yin [2 ,3 ]
Yi, Danielle [1 ]
Tang, Chuan Yi [4 ,5 ]
Galas, David J. [1 ,6 ]
Hood, Leroy E. [1 ,6 ]
机构
[1] Inst Syst Biol, Seattle, WA 98109 USA
[2] Chang Gung Univ, Coll Med, Dept Neurosurg, Kwei Shan 333, Taoyuan County, Taiwan
[3] Mem Hosp, Kwei Shan 333, Taoyuan County, Taiwan
[4] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300, Taiwan
[5] Providence Univ, Dept Comp Sci & Informat Engn, Taichung 433, Taiwan
[6] Univ Luxembourg, Luxembourg Ctr Syst Biomed, Luxembourg, Luxembourg
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ANALYSIS; SPLICE JUNCTIONS; ALIGNMENT; REVEALS; TRANSCRIPTOMES; FRAMEWORK; VARIANTS; TOOL;
D O I
10.1093/nar/gkr1248
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing (NGS) technologies-based transcriptomic profiling method often called RNA-seq has been widely used to study global gene expression, alternative exon usage, new exon discovery, novel transcriptional isoforms and genomic sequence variations. However, this technique also poses many biological and informatics challenges to extracting meaningful biological information. The RNA-seq data analysis is built on the foundation of high quality initial genome localization and alignment information for RNA-seq sequences. Toward this goal, we have developed RNASEQR to accurately and effectively map millions of RNA-seq sequences. We have systematically compared RNASEQR with four of the most widely used tools using a simulated data set created from the Consensus CDS project and two experimental RNA-seq data sets generated from a human glioblastoma patient. Our results showed that RNASEQR yields more accurate estimates for gene expression, complete gene structures and new transcript isoforms, as well as more accurate detection of single nucleotide variants (SNVs). RNASEQR analyzes raw data from RNA-seq experiments effectively and outputs results in a manner that is compatible with a wide variety of specialized downstream analyses on desktop computers.
引用
收藏
页数:12
相关论文
共 45 条
[1]  
ADAMS MD, 1995, NATURE, V377, P3
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   Detection of splice junctions from paired-end RNA-seq data by SpliceMap [J].
Au, Kin Fai ;
Jiang, Hui ;
Lin, Lan ;
Xing, Yi ;
Wong, Wing Hung .
NUCLEIC ACIDS RESEARCH, 2010, 38 (14) :4570-4578
[4]   PASS: a program to align short sequences [J].
Campagna, Davide ;
Albiero, Alessandro ;
Bilardi, Alessandra ;
Caniato, Elisa ;
Forcato, Claudio ;
Manavski, Svetlin ;
Vitulo, Nicola ;
Valle, Giorgio .
BIOINFORMATICS, 2009, 25 (07) :967-968
[5]   Stem cell transcriptome profiling via massive-scale mRNA sequencing [J].
Cloonan, Nicole ;
Forrest, Alistair R. R. ;
Kolle, Gabriel ;
Gardiner, Brooke B. A. ;
Faulkner, Geoffrey J. ;
Brown, Mellissa K. ;
Taylor, Darrin F. ;
Steptoe, Anita L. ;
Wani, Shivangi ;
Bethel, Graeme ;
Robertson, Alan J. ;
Perkins, Andrew C. ;
Bruce, Stephen J. ;
Lee, Clarence C. ;
Ranade, Swati S. ;
Peckham, Heather E. ;
Manning, Jonathan M. ;
McKernan, Kevin J. ;
Grimmond, Sean M. .
NATURE METHODS, 2008, 5 (07) :613-619
[6]   RNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data [J].
Cloonan, Nicole ;
Xu, Qinying ;
Faulkner, Geoffrey J. ;
Taylor, Darrin F. ;
Tang, Dave T. P. ;
Kolle, Gabriel ;
Grimmond, Sean M. .
BIOINFORMATICS, 2009, 25 (19) :2615-2616
[7]   Uncovering the Complexity of Transcriptomes with RNA-Seq [J].
Costa, Valerio ;
Angelini, Claudia ;
De Feis, Italia ;
Ciccodicola, Alfredo .
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2010,
[8]   Optimal spliced alignments of short sequence reads [J].
De Bona, Fabio ;
Ossowski, Stephan ;
Schneeberger, Korbinian ;
Raetsch, Gunnar .
BIOINFORMATICS, 2008, 24 (16) :I174-I180
[9]   Annotating genomes with massive-scale RNA sequencing [J].
Denoeud, France ;
Aury, Jean-Marc ;
Da Silva, Corinne ;
Noel, Benjamin ;
Rogier, Odile ;
Delledonne, Massimo ;
Morgante, Michele ;
Valle, Giorgio ;
Wincker, Patrick ;
Scarpelli, Claude ;
Jaillon, Olivier ;
Artiguenave, Francois .
GENOME BIOLOGY, 2008, 9 (12)
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+