Atomic Layer Deposited Lithium Silicates as Solid-State Electrolytes for All-Solid-State Batteries

被引:67
作者
Wang, Biqiong [1 ,2 ]
Liu, Jian [3 ]
Banis, Mohammad Norouzi [1 ]
Sun, Qian [1 ]
Zhao, Yang [1 ]
Li, Ruying [1 ]
Sham, Tsun-Kong [2 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
[3] Univ British Columbia, Sch Engn, Fac Appl Sci, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
solid-state electrolytes; atomic layer deposition; X-ray absorption spectroscopy; lithium ion batteries; lithium silicates; SI K-EDGE; THIN-FILM LITHIUM; MEDIUM-RANGE ORDER; ROOM-TEMPERATURE; ION-TRANSPORT; OXIDE; XANES; GLASS; MECHANISM;
D O I
10.1021/acsami.7b07113
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Development of solid-state electrolyte (SSE) thin films is a key toward the fabrication of all -solid-state batteries (ASSBs). However, it is challenging for conventional deposition techniques to deposit uniform and conformal SSE thin films in a well-controlled fashion. In this study, atomic layer deposition (ALD) was used to fabricate lithium silicate thin films as a potential SSE for ASSBs. Lithium silicates thin films were deposited by combining ALD Li2O and SiO2 subcycles using lithium tert-butoxide, tetraethylorthosilane, and H2O as precursors. Uniform and self-limiting growth was achieved at temperatures between 225 and 300 degrees C. X-ray absorption spectroscopy analysis disclosed that the as-deposited lithium silicates were composed of SiO4 tetrahedron structure and lithium oxide as the network modifier. X-ray photoelectron spectroscopy confirmed the chemical states of Li in the thin films were the same with that in standard lithium silicate. With one to one subcycle of Li2O and SiO2 the thin films had a composition close to Li4SiO4 whereas one more subcycle of Li2O delivered a higher lithium content. The lithium silicate thin film prepared at 250 degrees C exhibited an ionic conductivity of 1.45X10(-6) S cm(-1) at 373 K. The high ionic conductivity of lithium silicate was due to the higher lithium concentration and lower activation energy.
引用
收藏
页码:31786 / 31793
页数:8
相关论文
共 70 条
[1]   Atomic Layer Deposition of Li2O-Al2O3 Thin Films [J].
Aaltonen, Titta ;
Nilsen, Ola ;
Magraso, Anna ;
Fjellvag, Helmer .
CHEMISTRY OF MATERIALS, 2011, 23 (21) :4669-4675
[2]   Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition [J].
Aaltonen, Titta ;
Alnes, Mari ;
Nilsen, Ola ;
Costelle, Leila ;
Fjellvag, Helmer .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (14) :2877-2881
[3]  
Anderson O., 1954, J. Am. Ceram. Soc, V37, P573, DOI [10.1111/j.1151-2916.1954.tb13991.x, DOI 10.1111/J.1151-2916.1954.TB13991.X]
[4]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[5]   ELECTRICAL-PROPERTIES OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS [J].
BATES, JB ;
DUDNEY, NJ ;
GRUZALSKI, GR ;
ZUHR, RA ;
CHOUDHURY, A ;
LUCK, CF ;
ROBERTSON, JD .
SOLID STATE IONICS, 1992, 53 :647-654
[6]  
Buchner S., 2013, Open Journal of Inorganic Nonmetallic Materials, V03, P15, DOI [10.4236/ojinm.2013.32004, DOI 10.4236/OJINM.2013.32004]
[7]   Medium range structure of borosilicate glasses from Si K-edge XANES: a combined approach based on multiple scattering and molecular dynamics calculations [J].
Cabaret, D ;
Le Grand, M ;
Ramos, A ;
Flank, AM ;
Rossano, S ;
Galoisy, L ;
Calas, G ;
Ghaleb, D .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 289 (1-3) :1-8
[8]   Atomic Layer Deposition of LiOH and Li2CO3 Using Lithium t-butoxide as the Lithium Source [J].
Cavanagh, A. S. ;
Lee, Y. ;
Yoon, B. ;
George, S. M. .
ATOMIC LAYER DEPOSITION APPLICATIONS 6, 2010, 33 (02) :223-229
[9]  
Charles R.J., 2006, J. Am. Ceram. Soc. Soc, V46, P460