Exact and approximation algorithms for minimum-width cylindrical shells

被引:16
作者
Agarwal, PK
Aronov, B
Sharir, M
机构
[1] Duke Univ, Dept Comp Sci, Ctr Geometr Comp, Durham, NC 27708 USA
[2] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s00454-001-0039-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in R-3. Let omega* be the width (i.e., thickness) of a minimum-width infinite cylindrical shell (the region between two co-axial cylinders) containing S. We first present an O(n(5))-time algorithm for computing omega*, which as far as we know is the first nontrivial algorithm for this problem. We then present an O(n(2+delta))- time algorithm, for any delta > 0, that computes a cylindrical shell of width at most 56 omega* containing S.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 18 条
[1]   A Bayesian evolutionary distance for parametrically aligned sequences [J].
Agarwal, P ;
States, DJ .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1996, 3 (01) :1-17
[2]   Efficient randomized algorithms for some geometric optimization problems [J].
Agarwal, PK ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 16 (04) :317-337
[3]   Approximation algorithms for minimum-width annuli and shells [J].
Agarwal, PK ;
Aronov, B ;
Har-Peled, S ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (04) :687-705
[4]   Line transversals of balls and smallest enclosing cylinders in three dimensions [J].
Agarwal, PK ;
Aronov, B ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) :373-388
[5]   ON RANGE SEARCHING WITH SEMIALGEBRAIC SETS [J].
AGARWAL, PK ;
MATOUSEK, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (04) :393-418
[6]  
ANDREWS GE, 1963, T AM MATH SOC, V106, P270
[7]  
[Anonymous], P 16 ANN S COMP GEOM
[8]  
Barequet G, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P82
[9]  
De Berg M., 2000, COMPUTATIONAL GEOMET, DOI DOI 10.1007/978-3-662-03427-9
[10]  
Devillers O, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P518