Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion

被引:43
作者
Bronner, C. [1 ]
Leyssner, F. [1 ]
Stremlau, S. [1 ]
Utecht, M. [2 ]
Saalfrank, P. [2 ]
Klamroth, T. [2 ]
Tegeder, P. [1 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[2] Univ Potsdam, Inst Chem, D-14476 Potsdam, Germany
关键词
HYBRID;
D O I
10.1103/PhysRevB.86.085444
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Angle-resolved two-photon photoemission and high-resolution electron energy loss spectroscopy are employed to derive the electronic structure of a subnanometer atomically precise quasi-one-dimensional graphene nanoribbon (GNR) on Au(111). We resolved occupied and unoccupied electronic bands including their dispersion and determined the band gap, which possesses an unexpectedly large value of 5.1 eV. Supported by density functional theory calculations for the idealized infinite polymer and finite size oligomers, an unoccupied nondispersive electronic state with an energetic position in the middle of the band gap of the GNR could be identified. This state resides at both ends of the ribbon (end state) and is only found in the finite sized systems, i.e., the oligomers.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[3]   Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons [J].
Bjork, Jonas ;
Stafstrom, Sven ;
Hanke, Felix .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :14884-14887
[4]   The influence of the electronic structure of adsorbate-substrate complexes on photoisomerization ability [J].
Bronner, Christopher ;
Schulze, Michael ;
Hagen, Sebastian ;
Tegeder, Petra .
NEW JOURNAL OF PHYSICS, 2012, 14
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]   Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model [J].
Chaves, A. J. ;
Lima, G. D. ;
de Paula, W. ;
Cordeiro, C. E. ;
Delfino, A. ;
Frederico, T. ;
Oliveira, O. .
PHYSICAL REVIEW B, 2011, 83 (15)
[7]   Peculiar width dependence of the electronic properties of carbon nanoribbons [J].
Ezawa, M .
PHYSICAL REVIEW B, 2006, 73 (04)
[8]  
Frisch M. J., 2016, Gaussian 09 Revis, DOI 10.1159/000348293
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Nano-architectures by covalent assembly of molecular building blocks [J].
Grill, Leonhard ;
Dyer, Matthew ;
Lafferentz, Leif ;
Persson, Mats ;
Peters, Maike V. ;
Hecht, Stefan .
NATURE NANOTECHNOLOGY, 2007, 2 (11) :687-691