Probing the functional importance of the hexameric ring structure of RNase PH

被引:23
作者
Choi, JM
Park, EY
Kim, JH
Chang, SK
Cho, YJ
机构
[1] Pohang Univ Sci & Technol, Ctr Struct Biol, Natl Creat Res Initiat, Pohang 790784, Kyungbook, South Korea
[2] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, Kyungbook, South Korea
关键词
D O I
10.1074/jbc.M309628200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNase PH is a phosphate-dependent exoribonuclease that catalyzes the removal of nucleotides at the 3' end of the tRNA precursor, leading to the release of nucleoside diphosphate, and generates the CCA end during the maturation process. The 1.9-Angstrom crystal structures of the apo and the phosphate-bound forms of RNase PH from Pseudomonas aeruginosa reveal a monomeric RNase PH with an alpha/beta-fold tightly associated into a hexameric ring structure in the form of a trimer of dimers. A five ion pair network, Glu-63-Arg-74-Asp-116-Arg-77-Asp-118 and an ion-pair Glu-26-Arg-69 that are positioned symmetrically in the trimerization interface play critical roles in the formation of a hexameric ring. Single or double mutations of Arg-69, Arg-74, or Arg-77 in these ion pairs leads to the dissociation of the RNase PH hexamer into dimers without perturbing the overall monomeric structure. The dissociated RNase PH dimer completely lost its binding affinity and catalytic activity against a precursor tRNA. Our structural and mutational analyses of RNase PH demonstrate that the hexameric ring formation is a critical feature for the function of members of the RNase PH family.
引用
收藏
页码:755 / 764
页数:10
相关论文
共 29 条
[21]   Processing of X-ray diffraction data collected in oscillation mode [J].
Otwinowski, Z ;
Minor, W .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :307-326
[22]  
Rees DC, 2001, METHOD ENZYMOL, V334, P423
[23]   CHAIN - A CRYSTALLOGRAPHIC MODELING PROGRAM [J].
SACK, JS .
JOURNAL OF MOLECULAR GRAPHICS, 1988, 6 (04) :224-225
[24]   This is the end:: Processing, editing and repair at the tRNA 3′-terminus [J].
Schürer, H ;
Schiffer, S ;
Marchfelder, A ;
Mörl, M .
BIOLOGICAL CHEMISTRY, 2001, 382 (08) :1147-1156
[25]  
SEKIYA T, 1979, J BIOL CHEM, V254, P5802
[26]   The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution:: A classic structure revisited [J].
Shi, HJ ;
Moore, PB .
RNA, 2000, 6 (08) :1091-1105
[27]   A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation [J].
Symmons, MF ;
Jones, GH ;
Luisi, BF .
STRUCTURE, 2000, 8 (11) :1215-1226
[28]   Automated MAD and MIR structure solution [J].
Terwilliger, TC ;
Berendzen, J .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 :849-861
[29]   THE STRUCTURE OF PYROCOCCUS-FURIOSUS GLUTAMATE-DEHYDROGENASE REVEALS A KEY ROLE FOR ION-PAIR NETWORKS IN MAINTAINING ENZYME STABILITY AT EXTREME TEMPERATURES [J].
YIP, KSP ;
STILLMAN, TJ ;
BRITTON, KL ;
ARTYMIUK, PJ ;
BAKER, PJ ;
SEDELNIKOVA, SE ;
ENGEL, PC ;
PASQUO, A ;
CHIARALUCE, R ;
CONSALVI, V ;
SCANDURRA, R ;
RICE, DW .
STRUCTURE, 1995, 3 (11) :1147-1158