DNA Nicks Promote Efficient and Safe Targeted Gene Correction

被引:61
作者
Davis, Luther [1 ,3 ]
Maizels, Nancy [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Immunol, Sch Med, Seattle, WA 98195 USA
[2] Univ Washington, Dept Biochem, Sch Med, Seattle, WA 98195 USA
[3] NW Genome Engn Consortium, Seattle, WA USA
来源
PLOS ONE | 2011年 / 6卷 / 09期
基金
美国国家卫生研究院;
关键词
ZINC-FINGER NUCLEASES; DOUBLE-STRAND BREAKS; IN-VIVO; HOMING ENDONUCLEASE; HOMOLOGOUS RECOMBINATION; TRANSCRIPTION; PROTEINS; REPAIR; GENERATION; PATHWAY;
D O I
10.1371/journal.pone.0023981
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Targeted gene correction employs a site-specific DNA lesion to promote homologous recombination that eliminates mutation in a disease gene of interest. The double-strand break typically used to initiate correction can also result in genomic instability if deleterious repair occurs rather than gene correction, possibly compromising the safety of targeted gene correction. Here we show that single-strand breaks (nicks) and double-strand breaks both promote efficient gene correction. However, breaks promote high levels of inadvertent but heritable genomic alterations both locally and elsewhere in the genome, while nicks are accompanied by essentially no collateral local mutagenesis, and thus provide a safer approach to gene correction. Defining efficacy as the ratio of gene correction to local deletion, nicks initiate gene correction with 70-fold greater efficacy than do double-strand breaks (29.0 +/- 6.0% and 0.42 +/- 0.03%, respectively). Thus nicks initiate efficient gene correction, with limited local mutagenesis. These results have clear therapeutic implications, and should inform future design of meganucleases for targeted gene correction.
引用
收藏
页数:7
相关论文
共 35 条
[1]   More forks on the road to replication stress recovery [J].
Allen, Chris ;
Ashley, Amanda K. ;
Hromas, Robert ;
Nickoloff, Jac A. .
JOURNAL OF MOLECULAR CELL BIOLOGY, 2011, 3 (01) :4-12
[2]   A site- and strand-specific DNA break confers asymmetric switching potential in fission yeast [J].
Arcangioli, B .
EMBO JOURNAL, 1998, 17 (15) :4503-4510
[3]   TALEs of genome targeting [J].
Boch, Jens .
NATURE BIOTECHNOLOGY, 2011, 29 (02) :135-136
[4]  
CERTO MT, 2011, NAT METHODS IN PRESS
[5]   Targeting DNA Double-Strand Breaks with TAL Effector Nucleases [J].
Christian, Michelle ;
Cermak, Tomas ;
Doyle, Erin L. ;
Schmidt, Clarice ;
Zhang, Feng ;
Hummel, Aaron ;
Bogdanove, Adam J. ;
Voytas, Daniel F. .
GENETICS, 2010, 186 (02) :757-U476
[6]   DNA damage, homology-directed repair, and DNA methylation [J].
Cuozzo, Concetta ;
Porcellini, Antonio ;
Angrisano, Tiziana ;
Morano, Annalisa ;
Lee, Bongyong ;
Di Pardo, Alba ;
Messina, Samantha ;
Iuliano, Rodolfo ;
Fusco, Alfredo ;
Santillo, Maria R. ;
Muller, Mark T. ;
Chiariotti, Lorenzo ;
Gottesman, Max E. ;
Avvedimento, Enrico V. .
PLOS GENETICS, 2007, 3 (07) :1144-1162
[7]   ANALYSIS OF MUTATION IN HUMAN-CELLS BY USING AN EPSTEIN-BARR-VIRUS SHUTTLE SYSTEM [J].
DUBRIDGE, RB ;
TANG, P ;
HSIA, HC ;
LEONG, PM ;
MILLER, JH ;
CALOS, MP .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :379-387
[8]   Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences [J].
Fajardo-Sanchez, Emmanuel ;
Stricher, Francois ;
Paques, Frederic ;
Isalan, Mark ;
Serrano, Luis .
NUCLEIC ACIDS RESEARCH, 2008, 36 (07) :2163-2173
[9]   Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells [J].
Guirouilh-Barbat, J ;
Huck, S ;
Bertrand, P ;
Pirzio, L ;
Desmaze, C ;
Sabatier, L ;
Lopez, BS .
MOLECULAR CELL, 2004, 14 (05) :611-623
[10]   A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency [J].
Hacein-Bey-Abina, S ;
von Kalle, C ;
Schmidt, M ;
Le Deist, F ;
Wulffraat, N ;
McIntyre, E ;
Radford, I ;
Villeval, JL ;
Fraser, CC ;
Cavazzana-Calvo, M ;
Fischer, A .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (03) :255-256