Regulatory role of nitric oxide on monocyte-derived dendritic cell functions

被引:26
作者
Corinti, S [1 ]
Pastore, S [1 ]
Mascia, F [1 ]
Girolomoni, G [1 ]
机构
[1] Ist Ricovero & Cura Carattere Sci, Ist Dermopatico Immacolata, Immunol Lab, I-00167 Rome, Italy
关键词
D O I
10.1089/107999003322277838
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) has an established role in the defense against bacterial infections and exerts multiple modulatory activities on both inflammatory and immune responses. However, the relevance of NO on dendritic cell (DC) functions has been poorly investigated. In this study, we found that addition of the NO donor S-nitrosoglutathione (GSNO) to monocyte-derived DCs matured by lipopolysaccharide (LPS) or soluble CD40 ligand led to a decreased capacity to activate naive allogeneic T cells but a more prominent Th1 polarization, with increased interferon-gamma (IFN-gamma) secretion and reduced interleukin-5 (IL-5) release. The presence of GSNO during maturation of DCs caused a reduced expression of surface CD86, whereas CD80, CD83, and MHC molecule expression was not affected. Moreover, GSNO induced a dose-dependent decrease of IL-10 and enhancement of tumor necrosis factor-alpha (TNF-alpha) release from mature DCs. In parallel, a marked reduced production of IL-12 p40 subunit but no significant perturbation of the bioactive IL-12 p70 production was observed. Finally, GSNO significantly reduced the release of IP-10/CXCL10 and RANTES/CCL5 but not IL-8/CXCL8 by mature DCs. Although GSNO can strengthen the capacity of mature DCs to induce type 1 polarization of T lymphocytes, our data suggest that it elicits distinct anti-inflammatory functions, eventually reducing T lymphocyte proliferation and recruitment.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 36 条
[1]  
Albanesi C, 2001, J LEUKOCYTE BIOL, V70, P617
[2]  
Allione A, 1999, J IMMUNOL, V163, P4182
[3]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[4]  
Bingisser RM, 1998, J IMMUNOL, V160, P5729
[5]   Nitric oxide and the immune response [J].
Bogdan, C .
NATURE IMMUNOLOGY, 2001, 2 (10) :907-916
[6]   Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: Dependency on antigen dose and differential toll-like receptor ligation [J].
Boonstra, A ;
Asselin-Paturel, C ;
Gilliet, M ;
Crain, C ;
Trinchieri, G ;
Liu, YJ ;
O'Garra, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 197 (01) :101-109
[7]   Nitric oxide activation of p38 mitogen-activated protein kinase in 293T fibroblasts requires cGMP-dependent protein kinase [J].
Browning, DD ;
McShane, MP ;
Marty, C ;
Ye, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (04) :2811-2816
[8]  
Callsen D, 1998, J IMMUNOL, V161, P4852
[9]   Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent THI polarization [J].
Cella, M ;
Facchetti, F ;
Lanzavecchia, A ;
Colonna, M .
NATURE IMMUNOLOGY, 2000, 1 (04) :305-310
[10]   Nitric oxide as a bioregulator of apoptosis [J].
Chung, HT ;
Pae, HO ;
Choi, BM ;
Billiar, TR ;
Kim, YM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 282 (05) :1075-1079