We visualized in real time electrodeposition-driven colloid crystal growth on patterned conductive surfaces. The electrode was patterned with dielectric ribs and conductive grooves; the groove width was commensurate or incommensurate with a two-dimensional colloid crystal lattice. Electrodeposition was carried out against gravity to decouple sedimentation and electrodeposition of colloid particles. Our experiments reveal the following: (i) Colloid crystal growth occurs under the action of electrohydrodynamic forces, in contrast with colloid assembly under the action of capillary forces. (ii) Confinement of the colloid arrays reduces the size of particle clusters. Small clusters easily undergo structural rearrangements to produce close-packed crystals when the groove width is commensurate or nearly commensurate with the 2D lattice. (iii) Incommensurability between the two-dimensional crystalline lattice and the groove width exceeding ca. 15% leads to the formation of non-close-packed structures and the distortion of colloid arrays.
机构:
Kwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South KoreaKwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea
Yi, DK
;
Seo, EM
论文数: 0引用数: 0
h-index: 0
机构:
Kwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South KoreaKwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea
Seo, EM
;
Kim, DY
论文数: 0引用数: 0
h-index: 0
机构:
Kwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South KoreaKwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea
机构:
Kwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South KoreaKwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea
Yi, DK
;
Seo, EM
论文数: 0引用数: 0
h-index: 0
机构:
Kwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South KoreaKwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea
Seo, EM
;
Kim, DY
论文数: 0引用数: 0
h-index: 0
机构:
Kwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South KoreaKwan Ju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea