Identification of proton-transfer pathways in human carbonic anhydrase II

被引:54
作者
Roy, Arijit [1 ]
Taraphder, Srabani [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Kharagpur 721302, W Bengal, India
关键词
D O I
10.1021/jp073499t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the probable proton-transfer pathways from the surface of human carbonic anhydrase II into the active site cavity through His-64 that has been widely implicated as a key residue along the protontransfer path. A recursive analysis of hydrogen-bonded clusters in the static crystallographic structure shows that there is no complete path through His-64 in either of its experimentally detected conformations. Side chain conformational fluctuation of His-64 from its outward conformation toward the active site is found to provide a crucial dynamic connectivity needed to complete the path coupled to local reorganization of the protein structure and hydration. The energy and free energy barriers along the detected pathway have been estimated to derive the mechanism of His-64 rotation toward the active site. We also investigate a dynamical connectivity map that highlights networks of disordered water molecules that may promote a direct (and probably transient) access of the solvent to the active site. Our studies reveal how such solvent access channels may be related to the putative proton shuttle mediated by His-64. The paths thus identified can be potentially used as reaction coordinates for further studies on the molecular mechanism of enzyme action.
引用
收藏
页码:10563 / 10576
页数:14
相关论文
共 68 条
[1]   ENGINEERING THE HYDROPHOBIC POCKET OF CARBONIC ANHYDRASE-II [J].
ALEXANDER, RS ;
NAIR, SK ;
CHRISTIANSON, DW .
BIOCHEMISTRY, 1991, 30 (46) :11064-11072
[2]   Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis [J].
Antoniou, Dimitri ;
Basner, Jodi ;
Nunez, Sara ;
Schwartz, Steven D. .
CHEMICAL REVIEWS, 2006, 106 (08) :3170-3187
[3]   COMPUTER-SIMULATION OF THE INITIAL PROTON-TRANSFER STEP IN HUMAN CARBONIC ANHYDRASE-I [J].
AQVIST, J ;
WARSHEL, A .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (01) :7-14
[4]   Transition path sampling: Throwing ropes over rough mountain passes, in the dark [J].
Bolhuis, PG ;
Chandler, D ;
Dellago, C ;
Geissler, PL .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2002, 53 :291-318
[5]   Studies of proton translocations in biological systems: Simulating proton transport in carbonic anhydrase by EVB-based models [J].
Braun-Sand, S ;
Strajbl, M ;
Warshel, A .
BIOPHYSICAL JOURNAL, 2004, 87 (04) :2221-2239
[6]  
BROOKS C, 1990, THEORETICAL PERSPECT
[7]   On the origin of the electrostatic barrier for proton transport in aquaporin [J].
Burykin, A ;
Warshel, A .
FEBS LETTERS, 2004, 570 (1-3) :41-46
[8]   Is a "proton wire" concerted or stepwise? A model study of proton transfer in carbonic anhydrase [J].
Cui, Q ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (04) :1071-1078
[9]  
CUKIERMAN S, 2006, BIOCHIM BIOPHYS ACTA, V1787, P876
[10]   The role of dynamics in enzyme activity [J].
Daniel, RM ;
Dunn, RV ;
Finney, JL ;
Smith, JC .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2003, 32 :69-92