Is a "proton wire" concerted or stepwise? A model study of proton transfer in carbonic anhydrase

被引:146
作者
Cui, Q [1 ]
Karplus, M
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[3] Univ Wisconsin, Inst Theoret Chem, Madison, WI 53706 USA
[4] Univ Strasbourg, ISIS, Lab Chim Biophys, F-67000 Strasbourg, France
关键词
D O I
10.1021/jp021931v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energetics of proton transfer reactions in carbonic anhydrase (CA) have been studied with an active site model. Specifically, proton transfer from a zinc-bound water molecule to a histidine residue mediated by a numbers of water molecules was investigated. With two or three bridging water molecules, the proton transfers are fully or nearly fully concerted and only one saddle point exists. With an additional water molecule that forms a ring bridge, an intermediate is formed in which one of the water molecules exists as a hydronium ion. In contrast to previous calculations in which either a low-level of theory was employed or a stepwise mechanism was assumed, the energetics obtained from the current work are approximately consistent with the experimental estimates. In all of the scenarios, the motion of more than one proton is involved in the transition state, which is in agreement with the experimental observation that the reaction rates in H2O/D2O mixture have an exponential dependence on the fraction of D2O in the solvent. For three (W3) or four waters (W4), the proton transfer to the "His 64" model is hardly involved in the transition state, suggesting that the orientation of the proton acceptor is less important than for only two waters (W2). Thus, the W3 and W4 results are consistent with the experimental observation that many kinetic properties of the H64A mutant of CA in well-buffered imidazole solution are similar to the wild type. The barrier height increases, and the barrier frequency (and therefore, the contribution of tunneling) decreases as the number of bridging water molecules increases. Overall, these investigations demonstrate that the proton transfer reaction in CA is sensitive to the nature and structure of the water bridge, which would be influenced by the dynamics of the water molecules and amino acids in the active site of the protein.
引用
收藏
页码:1071 / 1078
页数:8
相关论文
共 82 条
[1]   Computational studies of the mechanism for proton and hydride transfer in liver alcohol dehydrogenase [J].
Agarwal, PK ;
Webb, SP ;
Hammes-Schiffer, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (19) :4803-4812
[2]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[3]  
AH H, 2002, BIOCHEMISTRY-US, V41, P3235
[4]   PROTON CONDUCTANCE BY THE GRAMICIDIN WATER WIRE - MODEL FOR PROTON CONDUCTANCE IN THE F1F0 ATPASES [J].
AKESON, M ;
DEAMER, DW .
BIOPHYSICAL JOURNAL, 1991, 60 (01) :101-109
[5]   COMPUTER-SIMULATION OF THE INITIAL PROTON-TRANSFER STEP IN HUMAN CARBONIC ANHYDRASE-I [J].
AQVIST, J ;
WARSHEL, A .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (01) :7-14
[6]   INTERRUPTION OF THE WATER CHAIN IN THE REACTION-CENTER FROM RHODOBACTER-SPHAEROIDES REDUCES THE RATES OF THE PROTON UPTAKE AND OF THE 2ND ELECTRON-TRANSFER TO Q(B) [J].
BACIOU, L ;
MICHEL, H .
BIOCHEMISTRY, 1995, 34 (25) :7967-7972
[7]   Molecular dynamics study of bacteriorhodopsin and the purple membrane [J].
Baudry, J ;
Tajkhorshid, E ;
Molnar, F ;
Phillips, J ;
Schulten, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (05) :905-918
[8]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[9]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[10]  
BORGIS D, 1989, NATO ADV SCI I A-LIF, V178, P293