The Sda1 protein is required for passage through start

被引:38
作者
Zimmerman, ZA [1 ]
Kellogg, DR [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Mol Cellular & Dev Biol, Sinsheimer Labs, Santa Cruz, CA 95064 USA
关键词
D O I
10.1091/mbc.12.1.201
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have used affinity chromatography to identify proteins that interact with Nap1, a protein previously shown to play a role in mitosis. Our studies demonstrate that a highly conserved protein called Sda1 binds to Nap1 both in vitro and in vivo. Loss of Sda1 function causes cells to arrest uniformly as unbudded cells that do not increase significantly in size. Cells arrested by loss of Sda1 function have a 1N DNA content, fail to produce the G1 cyclin Cln2, and remain responsive to mating pheromone, indicating that they arrest in G1 before Start. Expression of CLN2 from a heterologous promoter in temperature-sensitive sda1 cells induces bud emergence and polarization of the actin cytoskeleton, but does not induce cell division, indicating that the sda1 cell cycle arrest phenotype is not due simply to a failure to produce the G1 cyclins. The Sda1 protein is absent from cells arrested in G0 and is expressed before Start when cells reenter the cell cycle, further suggesting that Sda1 functions before Start. Taken together, these findings reveal that Sda1 plays a critical role in G1 events. In addition, these findings suggest that Nap1 is Likely to function during G1. Consistent with this, we have found that Nap1 is required for viability in cells lacking the redundant G1 cyclins Cln1 and Cln2. In contrast to a previous study, we have found no evidence that Sda1 is required for the assembly or function of the actin cytoskeleton. Further characterization of Sda1 is likely to provide important clues to the poorly understood mechanisms that control passage through G1.
引用
收藏
页码:201 / 219
页数:19
相关论文
共 61 条
[21]  
GUTHRIE C, 1991, METHOD ENZYMOL, V194, P273
[22]   A FAMILY OF CYCLIN HOMOLOGS THAT CONTROL THE G1 PHASE IN YEAST [J].
HADWIGER, JA ;
WITTENBERG, C ;
RICHARDSON, HE ;
LOPES, MD ;
REED, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (16) :6255-6259
[23]   GENETIC-CONTROL OF CELL-DIVISION CYCLE IN YEAST [J].
HARTWELL, LH ;
CULOTTI, J ;
PRINGLE, JR ;
REID, BJ .
SCIENCE, 1974, 183 (4120) :46-51
[24]   CONNECTIONS BETWEEN THE RAS-CYCLIC AMP PATHWAY AND G(1)-CYCLIN EXPRESSION IN THE BUDDING YEAST SACCHAROMYCES-CEREVISIAE [J].
HUBLER, L ;
BRADSHAWROUSE, J ;
HEIDEMAN, W .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (10) :6274-6282
[25]   REGULATION OF PROLIFERATION BY THE BUDDING YEAST SACCHAROMYCES-CEREVISIAE [J].
JOHNSTON, GC ;
SINGER, RA .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1990, 68 (02) :427-435
[26]   Feasting, fasting and fermenting - glucose sensing in yeast and other cells [J].
Johnston, M .
TRENDS IN GENETICS, 1999, 15 (01) :29-33
[27]   HUMAN EMBRYO RESEARCH DESERVES PUBLIC SUPPORT [J].
KELLEY, WN .
NATURE MEDICINE, 1995, 1 (01) :2-2
[28]   MEMBERS OF THE NAP/SET FAMILY OF PROTEINS INTERACT SPECIFICALLY WITH B-TYPE CYCLINS [J].
KELLOGG, DR ;
KIKUCHI, A ;
FUJIINAKATA, T ;
TURCK, CW ;
MURRAY, AW .
JOURNAL OF CELL BIOLOGY, 1995, 130 (03) :661-673
[29]   PURIFICATION OF A MULTIPROTEIN COMPLEX CONTAINING CENTROSOMAL PROTEINS FROM THE DROSOPHILA EMBRYO BY CHROMATOGRAPHY WITH LOW-AFFINITY POLYCLONAL ANTIBODIES [J].
KELLOGG, DR ;
ALBERTS, BM .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (01) :1-11
[30]   CELL-CYCLE-REGULATED TRANSCRIPTION IN YEAST [J].
KOCH, C ;
NASMYTH, K .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (03) :451-459