Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A

被引:78
作者
Bolam, DN
Xie, HF
White, P
Simpson, PJ
Hancock, SM
Williamson, MP
Gilbert, HJ [1 ]
机构
[1] Newcastle Univ, Dept Biol & Nutr Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Babraham Inst, Lab Mol Enzymol, Cambridge CB2 4AT, England
[3] Univ Sheffield, Krebs Inst, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
关键词
D O I
10.1021/bi002564l
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycoside hydrolases often contain multiple copies of noncatalytic carbohydrate binding modules (CBMs) from the same or different families. Currently, the functional importance of this complex molecular architecture is unclear. To investigate the role of multiple CBMs in plant cell wall hydrolases, we have determined the polysaccharide binding properties of wild type and various derivatives of Cellulomonas fimi xylanase 11A (Cf Xyn11A). This protein, which binds to both cellulose and xylan, contains two family 2b CBMs that exhibit 70% sequence identity, one internal (CBM2b-1), which has previously been shown to bind specifically to xylan and the other at the C-terminus (CBM2b-2). Biochemical characterization of CBM2b-2 showed that the module bound to insoluble and soluble oat spelt xylan and xylohexaose with K-a values of 5.6 x 10(4), 1.2 x 10(4), and 4.8 x 10(3) M-1, respectively, but exhibited extremely weak affinity for cellohexaose (<10(2) M-1), and its interaction with insoluble cellulose was too weak to quantify. The CBM did not interact with soluble forms of other plant cell wall polysaccharides. The three-dimensional structure of CBM2b-2 was determined by NMR spectroscopy. The module has a twisted "<beta>-sandwich" architecture, and the two surface exposed tryptophans, Trp 570 and Trp 602, which are in a perpendicular orientation with each other, were shown to be essential for ligand binding. In addition, changing Arg 573 to glycine altered the polysaccharide binding specificity of the module from xylan to cellulose. These data demonstrate that the biochemical properties and tertiary structure of CBM2b-2 and CBM2b-1 are extremely similar. When CBM2b-1 and CBM2b-2 were incorporated into a single polypeptide chain, either in the full-length enzyme or an artificial construct comprising both CBM2bs covalently joined via a flexible linker, there was an approximate 18-20-fold increase in the affinity of the protein for soluble and insoluble xylan, as compared to the individual modules, and a measurable interaction with insoluble acid-swollen cellulose, although the K-a (similar to6.0 x 10(4) M-1) was still much lower than for insoluble xylan (K-a = similar to1.0 x 10(6) M-1). These data demonstrate that the two family 2b CBMs of Cf Xyn11A act in synergy to bind acid swollen cellulose and xylan, We propose that the increased affinity of glycoside hydrolases for polysaccharides, through the synergistic interactions of CBMs, provides an explanation for the duplication of CBMs from the same family in some prokaryotic cellulases and xylanases.
引用
收藏
页码:2468 / 2477
页数:10
相关论文
共 42 条
[1]   Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase:: cloning, expression and binding studies [J].
Abou Hachem, M ;
Karlsson, EN ;
Bartonek-Roxå, E ;
Raghothama, S ;
Simpson, PJ ;
Gilbert, HJ ;
Williamson, MP ;
Holst, O .
BIOCHEMICAL JOURNAL, 2000, 345 :53-60
[2]   Temperature dependence of H-1 chemical shifts in proteins [J].
Baxter, NJ ;
Williamson, MP .
JOURNAL OF BIOMOLECULAR NMR, 1997, 9 (04) :359-369
[3]   Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates [J].
Black, GW ;
Rixon, JE ;
Clarke, JH ;
Hazlewood, GP ;
Theodorou, MK ;
Morris, P ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 1996, 319 :515-520
[4]   A MODULAR XYLANASE CONTAINING A NOVEL NONCATALYTIC XYLAN-SPECIFIC BINDING DOMAIN [J].
BLACK, GW ;
HAZLEWOOD, GP ;
MILLWARDSADLER, SJ ;
LAURIE, JI ;
GILBERT, HJ .
BIOCHEMICAL JOURNAL, 1995, 307 :191-195
[5]   Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity [J].
Bolam, DN ;
Ciruela, A ;
McQueen-Mason, S ;
Simpson, P ;
Williamson, MP ;
Rixon, JE ;
Boraston, A ;
Hazlewood, GP ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 1998, 331 :775-781
[6]   A novel mechanism of xylan binding by a lectin-like module from Streptomyces lividans xylanase 10A [J].
Boraston, AB ;
Tomme, P ;
Amandoron, EA ;
Kilburn, DG .
BIOCHEMICAL JOURNAL, 2000, 350 :933-941
[7]   Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C [J].
Brun, E ;
Johnson, PE ;
Creagh, AL ;
Tomme, P ;
Webster, P ;
Haynes, CA ;
McIntosh, LP .
BIOCHEMISTRY, 2000, 39 (10) :2445-2458
[8]   Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi [J].
Brun, E ;
Moriaud, F ;
Gans, P ;
Blackledge, MJ ;
Barras, F ;
Marion, D .
BIOCHEMISTRY, 1997, 36 (51) :16074-16086
[9]   The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules:: Structure and biochemistry of the Clostridium thermocellum X6b domain [J].
Charnock, SJ ;
Bolam, DN ;
Turkenburg, JP ;
Gilbert, HJ ;
Ferreira, LMA ;
Davies, GJ ;
Fontes, CMGA .
BIOCHEMISTRY, 2000, 39 (17) :5013-5021
[10]  
CLARKE JH, 1991, FEMS MICROBIOL LETT, V83, P305, DOI [10.1111/j.1574-6968.1991.tb04481.x, 10.1016/0378-1097(91)90493-T]