An explicit unconditionally stable numerical method for solving damped nonlinear Schrodinger equations with a focusing nonlinearity

被引:91
作者
Bao, WZ [1 ]
Jaksch, D
机构
[1] Natl Univ Singapore, Dept Computat Sci, Singapore 117543, Singapore
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
关键词
damped nonlinear Schrodinger equation (DNLS); time-splitting sine-spectral (TSSP) method; Gross-Pitaevskii equation (GPE); Bose-Einstein condensate (BEC); complex Ginzburg-Landau (CGL);
D O I
10.1137/S0036142902413391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces an extension of the time-splitting sine-spectral (TSSP) method for solving damped focusing nonlinear Schrodinger equations (NLSs). The method is explicit, unconditionally stable, and time transversal invariant. Moreover, it preserves the exact decay rate for the normalization of the wave function if linear damping terms are added to the NLS. Extensive numerical tests are presented for cubic focusing NLSs in two dimensions with a linear, cubic, or quintic damping term. Our numerical results show that quintic or cubic damping always arrests blowup, while linear damping can arrest blowup only when the damping parameter delta is larger than a threshold value delta(th). We note that our method can also be applied to solve the three-dimensional Gross-Pitaevskii equation with a quintic damping term to model the dynamics of a collapsing and exploding Bose-Einstein condensate (BEC).
引用
收藏
页码:1406 / 1426
页数:21
相关论文
共 39 条
[1]   Mean-field description of collapsing and exploding Bose-Einstein condensates [J].
Adhikari, SK .
PHYSICAL REVIEW A, 2002, 66 (01) :8
[2]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[3]   Bose-Einstein condensation of atomic gases [J].
Anglin, JR ;
Ketterle, W .
NATURE, 2002, 416 (6877) :211-218
[4]  
BAO W, 2003, 3 DIMENSIONAL SIMULA
[5]   Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semiclassical regimes [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :27-64
[6]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[7]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[8]   Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional [J].
Bao, WZ ;
Tang, WJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :230-254
[9]  
Ciegis R., 2001, Int. J. Appl. Sci. Comput., V8, P127
[10]   Very cold indeed: The nanokelvin physics of Bose-Einstein condensation [J].
Cornell, E .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (04) :419-434