Chromatic polynomials and order ideals of monomials

被引:15
作者
Brown, JI [1 ]
机构
[1] Dalhousie Univ, Dept Math Stat & Comp Sci, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
chromatic polynomial; graph; tree basis; broken circuit complex; order ideal of monomials; Grobner basis;
D O I
10.1016/S0012-365X(97)00277-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One expansion of the chromatic polynomial pi(G,x) of a graph G relies on spanning trees of a graph. In fact, for a connected graph G of order n, one can express pi(G,x)=(-1)(n-1)x Sigma(i=1)(n-1) t(i) (1-x)(i), where t(i) is the number of spanning trees with external activity 0 and internal activity i. Moreover, it is known (via commutative ring theory) that t(i) arises as the number of monomials of degree n - i - 1 in a set of monomials closed under division. We describe here how to explicitly carry out this construction algebraically. We also apply this viewpoint to prove a new bound for the roots of chromatic polynomials. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:43 / 68
页数:26
相关论文
共 42 条
[31]  
LEORINC B, 1979, THESIS COURANT I NEW
[32]   Some properties of enumeration in the theory of modular systems [J].
Macaulay, F. S. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1927, 26 :531-555
[33]  
Nijenhuis A., 1978, COMBINATORIAL ALGORI
[34]  
OXLEY JG, 1982, STUD APPL MATH, V66, P267
[35]  
Read RC., 1988, SELECTED TOPICS GRAP, V3, P15
[36]  
Stanley R.P., 1977, HIGHER COMBINATORICS, P51
[37]  
STANLEY RP, 1979, T AM MATH SOC, V249, P139
[38]  
Thier V., 1983, THESIS TU MUNCHEN
[39]  
Thulasiraman K., 1992, GRAPHS THEORY ALGORI
[40]  
VERTIGAN DL, 1992, COMBIN PROBAB COMPUT, V2, P181