EyeSite: a semi-automated database of protein families in the eye

被引:7
作者
Lee, DA
Fefeu, S
Edo-Ukeh, AA
Orengo, CA
Slingsby, C
机构
[1] Univ London Birkbeck Coll, Dept Crystallog, London WC1E 7HX, England
[2] UCL, Dept Biochem & Mol Biol, Biomol Struct & Modelling Grp, London WC1E 6BT, England
关键词
D O I
10.1093/nar/gkh090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The EyeSite is a web-based database of protein families for proteins that function in the eye and their homologous sequences. The resource clusters proteins at different levels of homology in order to faciltate functional annotation of sequences and modelling of proteins from structural homologues. Eye proteins are organized into the tissue types in which they function and are clustered into homologous families using a novel protocol employing the TribeMCL algorithm. Homologous families are further subdivided into sequence clusters for which multiple sequence alignments are generated. Structural annotations from the CATH domain database are provided for nearly 90% of the sequences, and protein family annotations from the Pfam database for similar to86%. Homology models have also been generated where appropriate. The EyeSite is stored in a relational database and is extensively linked to other online bioinformatics resources to help relate allelic variants, annotations and clinical details to the derived data in the database. The EyeSite is available for online search, sequence information and model retrieval at http://eyesite.cryst.bbk.ac.uk/.
引用
收藏
页码:D148 / D152
页数:5
相关论文
共 19 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[3]   GenBank [J].
Benson, DA ;
Karsch-Mizrachi, I ;
Lipman, DJ ;
Ostell, J ;
Rapp, BA ;
Wheeler, DL .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :15-18
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[6]   Gene3D: Structural assignment for whole genes and genomes using the CATH domain structure database [J].
Buchan, DWA ;
Shepherd, AJ ;
Lee, D ;
Pearl, FMG ;
Rison, SCG ;
Thornton, JM ;
Orengo, CA .
GENOME RESEARCH, 2002, 12 (03) :503-514
[7]   An efficient algorithm for large-scale detection of protein families [J].
Enright, AJ ;
Van Dongen, S ;
Ouzounis, CA .
NUCLEIC ACIDS RESEARCH, 2002, 30 (07) :1575-1584
[8]   Hidden Markov models for detecting remote protein homologies [J].
Karplus, K ;
Barrett, C ;
Hughey, R .
BIOINFORMATICS, 1998, 14 (10) :846-856
[9]  
Lo Conte L, 2002, NUCLEIC ACIDS RES, V30, P264
[10]   Comparative protein structure modeling of genes and genomes [J].
Martí-Renom, MA ;
Stuart, AC ;
Fiser, A ;
Sánchez, R ;
Melo, F ;
Sali, A .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2000, 29 :291-325