Simple adaptive-feedback controller for identical chaos synchronization

被引:158
作者
Huang, DB [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 03期
关键词
D O I
10.1103/PhysRevE.71.037203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on the invariance principle of differential equations, a simple adaptive-feedback scheme is proposed to strictly synchronize almost all chaotic systems. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to completely synchronize two almost arbitrary identical chaotic systems, so this scheme is analytical, and simple to implement in practice. Moreover, it is quite robust against the effect of noise. The famous Lorenz and Rossler hyperchaos systems are used as illustrative examples.
引用
收藏
页数:4
相关论文
共 29 条
[1]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[2]   From generalized synchrony to topological decoherence: Emergent sets in coupled chaotic systems [J].
Barreto, E ;
So, P ;
Gluckman, BJ ;
Schiff, SJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (08) :1689-1692
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]   Analyzing communication schemes using methods from nonlinear filtering [J].
Bröcker, J ;
Parlitz, U .
CHAOS, 2003, 13 (01) :195-208
[5]   Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds [J].
Brown, R ;
Rulkov, NF .
CHAOS, 1997, 7 (03) :395-413
[6]   Designing a coupling that guarantees synchronization between identical chaotic systems [J].
Brown, R ;
Rulkov, NF .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4189-4192
[7]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[8]   Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization [J].
Gauthier, DJ ;
Bienfang, JC .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1751-1754
[9]   Robust synchronization [J].
Grosu, I .
PHYSICAL REVIEW E, 1997, 56 (03) :3709-3712
[10]  
Huang DB, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.067201