From generalized synchrony to topological decoherence: Emergent sets in coupled chaotic systems

被引:26
作者
Barreto, E [1 ]
So, P
Gluckman, BJ
Schiff, SJ
机构
[1] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Psychol, Fairfax, VA 22030 USA
[3] George Mason Univ, Krasnow Inst Adv Study, Fairfax, VA 22030 USA
关键词
D O I
10.1103/PhysRevLett.84.1689
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the evolution of the unstable periodic orbit structure of coupled chaotic systems. This involves the creation of a complicated set outside of the synchronization manifold (the emergent set). We quantitatively identify a critical transition point in its development (the decoherence transition). For asymmetric systems we also describe a migration of unstable periodic orbits that is of central importance in understanding these systems. Our framework provides an experimentally measurable transition, even in situations where previously described bifurcation structures are inapplicable.
引用
收藏
页码:1689 / 1692
页数:4
相关论文
共 32 条
  • [1] Ablowitz R., 1939, PHILOS SCI, V6, P1, DOI [10.1086/286529, DOI 10.1086/286529]
  • [2] Abraham R., 1970, P S PURE MATH, V14, P5
  • [3] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [4] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [5] From attractor to chaotic saddle: A tale of transverse instability
    Ashwin, P
    Buescu, J
    Stewart, I
    [J]. NONLINEARITY, 1996, 9 (03) : 703 - 737
  • [6] Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits
    Astakhov, V
    Shabunin, A
    Kapitaniak, T
    Anishchenko, V
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (06) : 1014 - 1017
  • [7] Dynamical systems of Langevin type
    Beck, C
    [J]. PHYSICA A, 1996, 233 (1-2): : 419 - 440
  • [8] FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS
    ECKMANN, JP
    RUELLE, D
    [J]. PHYSICA D, 1992, 56 (2-3): : 185 - 187
  • [9] STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS
    FUJISAKA, H
    YAMADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01): : 32 - 47
  • [10] Differentiable generalized synchronization of chaos
    Hunt, BR
    Ott, E
    Yorke, JA
    [J]. PHYSICAL REVIEW E, 1997, 55 (04) : 4029 - 4034