Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits

被引:71
作者
Astakhov, V [1 ]
Shabunin, A [1 ]
Kapitaniak, T [1 ]
Anishchenko, V [1 ]
机构
[1] TECH UNIV LODZ, DIV DYNAM, PL-90924 LODZ, POLAND
关键词
D O I
10.1103/PhysRevLett.79.1014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the work we investigate the bifurcational mechanism of the loss of stability of the synchronous chaotic regime in coupled identical systems. We show that loss of synchronization is a result of the sequence of soft bifurcations of saddle periodic orbits which induce the bubbling and riddling transitions in the system. A bifurcation of a saddle periodic orbit embedded in the chaotic attractor determines the bubbling transition. The phenomenon of riddled basins occurs through a bifurcation of a periodic orbit located outside the symmetric subspace.
引用
收藏
页码:1014 / 1017
页数:4
相关论文
共 26 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[3]  
ANISHCHENKO VS, 1991, RADIOTEKH ELEKTRON+, V36, P338
[4]  
ANISHCHENKO VS, 1983, IZV VUZ RADIOFIZ+, V26, P832
[5]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[6]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[7]  
ASTAKHOV VV, 1989, PISMA ZH TEKH FIZ+, V15, P60
[8]  
ASTAKHOV VV, 1990, ZH TEKH FIZ+, V60, P19
[9]   A NEW INTERMITTENCY IN COUPLED DYNAMICAL-SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (04) :918-921
[10]   Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization [J].
Gauthier, DJ ;
Bienfang, JC .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1751-1754