Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures

被引:235
作者
Kuo, CL [1 ]
Kuo, TJ [1 ]
Huang, MH [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan
关键词
D O I
10.1021/jp0528919
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Unusual ZnO microspheres constructed of interconnected sheetlike nanostructures were prepared by the hydrothermal synthesis approach. These microspheres possess high surface areas (28.9 m(2)/g) and are amorphous. Trisodium citrate plays a key role in directing the formation of these microstructures. By increasing the reaction time, these microspheres gradually dissolved to form short hexagonal microrods with stacked nanoplate or nanosheet structure. The microrods were also formed under the influence of trisodium citrate. They are crystalline and show a strong (002) X-ray diffraction peak of wurtzite ZnO structure. Both microsphere and microrod samples show near-band-edge emission at similar to 385 nm, but only the microrod sample exhibits yellow luminescence at similar to 560 nm. Due to their high surface areas, these ZnO microstructures were examined for their ability to photodecompose phenol. The as-prepared samples did not display photocatalytic activity due to possible surface adsorption of solution species. However, microspheres with heat treatment to 300 degrees C can substantially enhance the photodecomposition of phenol under direct sunlight irradiation and still maintain their high surface area nanosheet structure.
引用
收藏
页码:20115 / 20121
页数:7
相关论文
共 47 条
  • [1] Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios
    Cheng, B
    Samulski, ET
    [J]. CHEMICAL COMMUNICATIONS, 2004, (08) : 986 - 987
  • [2] Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures
    Cölfen, H
    Mann, S
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (21) : 2350 - 2365
  • [3] Rotor-like ZnO by epitaxial growth under hydrothermal conditions
    Gao, XP
    Zheng, ZF
    Zhu, HY
    Pan, GL
    Bao, JL
    Wu, F
    Song, DY
    [J]. CHEMICAL COMMUNICATIONS, 2004, (12) : 1428 - 1429
  • [4] Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution
    Govender, K
    Boyle, DS
    Kenway, PB
    O'Brien, P
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (16) : 2575 - 2591
  • [5] Low-temperature wafer-scale production of ZnO nanowire arrays
    Greene, LE
    Law, M
    Goldberger, J
    Kim, F
    Johnson, JC
    Zhang, YF
    Saykally, RJ
    Yang, PD
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) : 3031 - 3034
  • [6] Directed growth of ordered arrays of small-diameter ZnO nanowires
    Greyson, EC
    Babayan, Y
    Odom, TW
    [J]. ADVANCED MATERIALS, 2004, 16 (15) : 1348 - +
  • [7] Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure
    Guo, L
    Ji, YL
    Xu, HB
    Simon, P
    Wu, ZY
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (50) : 14864 - 14865
  • [8] Room-temperature ultraviolet nanowire nanolasers
    Huang, MH
    Mao, S
    Feick, H
    Yan, HQ
    Wu, YY
    Kind, H
    Weber, E
    Russo, R
    Yang, PD
    [J]. SCIENCE, 2001, 292 (5523) : 1897 - 1899
  • [9] Huang MH, 2001, ADV MATER, V13, P113, DOI 10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO
  • [10] 2-H