Manipulating regioregular poly(3-hexylthiophene):: [6,6]-phenyl-C61-butyric acid methyl ester blends -: route towards high efficiency polymer solar cells

被引:351
作者
Li, Gang
Shrotriya, Vishal
Yao, Yan
Huang, Jinsong
Yang, Yang [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Solarmer Energy Inc, El Monte, CA 91731 USA
关键词
D O I
10.1039/b703075b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer or "plastics'' solar cells have been an intensively studied area since the discovery of efficient electron transfer between polymers and fullerenes and the introduction of the bulk-heterojunction concept. The last few years have seen significant improvement in plastic solar cell performance through aggressive research on the regioregular poly(3-hexylthiophene) (RR-P3HT) : [6,6]-phenyl-C-61- butyric acid methyl ester (PCBM) system. The morphology of the system is controlled through two major strategies which have proven effective in improving the device efficiency-thermal annealing and solvent annealing (slow growth). In this Feature Article, we review the recent progress on this material system. A detailed discussion on thermal annealing and solvent annealing approaches to improve device performance is presented, including a comparison between the two strategies. The effects of these two approaches on improving polymer crystallinity, light absorption in the polymer, carrier transport, blend film nano-morphology, etc. are summarized. We also include a brief discussion on accurate measurement and characterization techniques for polymer solar cells to correctly determine the efficiency by applying spectral mismatch factors. Future directions and challenges on polymer solar cell development are also discussed.
引用
收藏
页码:3126 / 3140
页数:15
相关论文
共 101 条
  • [21] 2-O
  • [22] Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents
    Chang, JF
    Sun, BQ
    Breiby, DW
    Nielsen, MM
    Sölling, TI
    Giles, M
    McCulloch, I
    Sirringhaus, H
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (23) : 4772 - 4776
  • [23] A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER
    CHAPIN, DM
    FULLER, CS
    PEARSON, GL
    [J]. JOURNAL OF APPLIED PHYSICS, 1954, 25 (05) : 676 - 677
  • [24] REGIOCONTROLLED SYNTHESIS OF POLY(3-ALKYLTHIOPHENES) MEDIATED BY RIEKE ZINC - THEIR CHARACTERIZATION AND SOLID-STATE PROPERTIES
    CHEN, TA
    WU, XM
    RIEKE, RD
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (01) : 233 - 244
  • [25] ELECTRICAL-CONDUCTIVITY IN DOPED POLYACETYLENE
    CHIANG, CK
    FINCHER, CR
    PARK, YW
    HEEGER, AJ
    SHIRAKAWA, H
    LOUIS, EJ
    GAU, SC
    MACDIARMID, AG
    [J]. PHYSICAL REVIEW LETTERS, 1977, 39 (17) : 1098 - 1101
  • [26] Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites
    Chirvase, D
    Parisi, J
    Hummelen, JC
    Dyakonov, V
    [J]. NANOTECHNOLOGY, 2004, 15 (09) : 1317 - 1323
  • [27] Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications
    Coakley, KM
    Liu, YX
    McGehee, MD
    Frindell, KL
    Stucky, GD
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (04) : 301 - 306
  • [28] Dittmer JJ, 2000, ADV MATER, V12, P1270, DOI 10.1002/1521-4095(200009)12:17<1270::AID-ADMA1270>3.0.CO
  • [29] 2-8
  • [30] SOLAR-CELL EFFICIENCY MEASUREMENTS
    EMERY, KA
    OSTERWALD, CR
    [J]. SOLAR CELLS, 1986, 17 (2-3): : 253 - 274