Methane hydrate stability and anthropogenic climate change

被引:199
作者
Archer, D. [1 ]
机构
[1] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
关键词
D O I
10.5194/bg-4-521-2007
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2. Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic. The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.
引用
收藏
页码:521 / 544
页数:24
相关论文
共 201 条
[1]   The 8k event:: cause and consequences of a major Holocene abrupt climate change [J].
Alley, RB ;
Agústsdóttir, AM .
QUATERNARY SCIENCE REVIEWS, 2005, 24 (10-11) :1123-1149
[2]   Permafrost distribution in the Northern Hemisphere under scenarios of climatic change [J].
Anisimov, OA ;
Nelson, FE .
GLOBAL AND PLANETARY CHANGE, 1996, 14 (1-2) :59-72
[3]  
Aoki Y, 2000, ANN NY ACAD SCI, V912, P136
[4]   Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing [J].
Archer, D ;
Buffett, B .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2005, 6
[5]   Fate of fossil fuel CO2 in geologic time -: art. no. C09S05 [J].
Archer, D .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C9) :1-6
[6]   The importance of ocean temperature to global biogeochemistry [J].
Archer, D ;
Martin, P ;
Buffett, B ;
Brovkin, V ;
Rahmstorf, S ;
Ganopolski, A .
EARTH AND PLANETARY SCIENCE LETTERS, 2004, 222 (02) :333-348
[7]   Multiple timescales for neutralization of fossil fuel CO2 [J].
Archer, D ;
Kheshgi, H ;
MaierReimer, E .
GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (04) :405-408
[8]   A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains [J].
Archer, DE ;
Morford, JL ;
Emerson, SR .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (01)
[9]   Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties [J].
Ben Clennell, M ;
Hovland, M ;
Booth, JS ;
Henry, P ;
Winters, WJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1999, 104 (B10) :22985-23003
[10]   THE CARBONATE-SILICATE GEOCHEMICAL CYCLE AND ITS EFFECT ON ATMOSPHERIC CARBON-DIOXIDE OVER THE PAST 100 MILLION YEARS [J].
BERNER, RA ;
LASAGA, AC ;
GARRELS, RM .
AMERICAN JOURNAL OF SCIENCE, 1983, 283 (07) :641-683