Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone

被引:97
作者
Grossmann, F
Monkhouse, PB
Ridder, M
Sick, V
Wolfrum, J
机构
[1] Physikalisch-Chemisches Institut, D-69120 Heidelberg
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 1996年 / 62卷 / 03期
关键词
D O I
10.1007/BF01080952
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser-Induced Fluorescence (LIF) from the S-1 state of acetone and 3-pentanone was studied as a function of temperature and pressure using excitation at 248 nm. Additionally, LIF of 3-pentanone was investigated using 277 and 312 nm excitation. Added gases were synthetic air, O-2, and N-2 respectively, in the range 0-50 bar. At 383 K and for excitation at 248 nm, all the chosen collision partners gave an initial enhancement in fluorescence intensity with added gas pressure. Thereafter, the signal intensity remained constant for N-2 but decreased markedly for O-2. For Synthetic air, only a small decrease occurred beyond 25 bar. At longer excitation wavelengths (277 and 312 nm), the corresponding initial rise in signal with synthetic air pressure was less than that for 248 nm. The temperature dependence of the fluorescence intensity was determined in the range 383-640 K at a constant pressure of 1 bar synthetic air. For 248 nm excitation, a marked fall in the fluorescence signal was observed, whereas for 277 nm excitation the corresponding decrease was only half as strong. By contrast, exciting 3-pentanone at 312 nm, the signal intensity increased markedly in the same temperature range. These results are consistent with the observation of a red shift of the absorption spectra (approximate to 9 nm) over this temperature range. Essentially, the same temperature dependence was obtained at 10 and 20 bar pressure of synthetic air. It is demonstrated that temperatures can be determined from the relative fluorescence intensities following excitation of 3-pentanone at 248 and 312 nm, respectively. This new approach could be of interest as a non-intrusive thermometry method, e.g., for the compression phase in combustion engines.
引用
收藏
页码:249 / 253
页数:5
相关论文
共 11 条
[1]  
ARNOLD A, 1989, OPT LETT, V15, P831
[2]  
ARNOLD A, 1992, JOULE0021UKJC EUR CO
[3]  
ARNOLD A, 1993, 932696 SAE
[4]  
GILZMANN OL, 1973, FARADAY T2, V70, P708
[5]   LASER STUDIES OF KETONE PHOTOPHYSICS [J].
HAAS, Y .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1990, 46 (04) :541-549
[6]   RADIATIVE AND NONRADIATIVE-TRANSITIONS IN FIRST EXCITED SINGLET-STATE OF SYMMETRICAL METHYL-SUBSTITUTED ACETONES [J].
HANSEN, DA ;
LEE, EKC .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (01) :183-189
[7]  
LOZANO A, 1992, EXP FLUIDS, V13, P369
[8]   OXYGEN QUENCHING AND RADIATIONLESS DECAY OF EXCITED SINGLET AND TRIPLET-STATE CARBONYL-COMPOUNDS [J].
MERKEL, PB ;
KEARNS, DR .
JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (01) :398-400
[9]   DEVELOPMENT AND DEMONSTRATION OF 2D-LIF FOR STUDIES OF MIXTURE PREPARATION IN SI ENGINES [J].
NEIJ, H ;
JOHANSSON, B ;
ALDEN, M .
COMBUSTION AND FLAME, 1994, 99 (02) :449-457
[10]  
OSSLER F, 1996, UNPUB APPL SPECTROSC