Geometric phase in open systems

被引:274
作者
Carollo, A [1 ]
Fuentes-Guridi, I
Santos, MF
Vedral, V
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BZ, England
[2] Perimeter Inst, Waterloo, ON N2J 2W9, Canada
[3] INFM, Unita Ricerca Palermo, I-90123 Palermo, Italy
关键词
D O I
10.1103/PhysRevLett.90.160402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the geometric phase associated with the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main sources of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e., it is independent of the number of jumps determined by the dephasing operator.
引用
收藏
页数:4
相关论文
共 17 条
[2]  
Carmichael H., 1993, OPEN SYSTEMS APPROAC
[3]   GEOMETRICAL PHASE IN THE CYCLIC EVOLUTION OF NON-HERMITIAN SYSTEMS [J].
DATTOLI, G ;
MIGNANI, R ;
TORRE, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5795-5806
[4]  
DEFARIA JGP, QUANTPH0205146
[5]   BERRYS PHASE IN OPTICAL RESONANCE [J].
ELLINAS, D ;
BARNETT, SM ;
DUPERTUIS, MA .
PHYSICAL REVIEW A, 1989, 39 (07) :3228-3237
[6]  
ERICSSON M, QUANTPH0205160
[7]   BERRYS GEOMETRICAL PHASES IN ESR IN THE PRESENCE OF A STOCHASTIC-PROCESS [J].
GAMLIEL, D ;
FREED, JH .
PHYSICAL REVIEW A, 1989, 39 (07) :3238-3255
[8]   GENERATORS OF QUANTUM DYNAMICAL SEMIGROUPS [J].
LINDBLAD, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (02) :119-130
[9]   QUANTUM KINEMATIC APPROACH TO THE GEOMETRIC PHASE .1. GENERAL FORMALISM [J].
MUKUNDA, N ;
SIMON, R .
ANNALS OF PHYSICS, 1993, 228 (02) :205-268
[10]  
Pancharatnam S., 1956, P INDIAN ACAD SCI A, V44, P247, DOI DOI 10.1007/BF03046050