Geometric phase in open systems

被引:274
作者
Carollo, A [1 ]
Fuentes-Guridi, I
Santos, MF
Vedral, V
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BZ, England
[2] Perimeter Inst, Waterloo, ON N2J 2W9, Canada
[3] INFM, Unita Ricerca Palermo, I-90123 Palermo, Italy
关键词
D O I
10.1103/PhysRevLett.90.160402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the geometric phase associated with the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main sources of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e., it is independent of the number of jumps determined by the dephasing operator.
引用
收藏
页数:4
相关论文
共 17 条
[11]   GEOMETRIC ASPECTS OF NONCYCLIC QUANTUM EVOLUTIONS [J].
PATI, AK .
PHYSICAL REVIEW A, 1995, 52 (04) :2576-2584
[12]   The quantum-jump approach to dissipative dynamics in quantum optics [J].
Plenio, MB ;
Knight, PL .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :101-144
[13]   Berry's phase in the presence of a dissipative medium [J].
Romero, KMF ;
Pinto, ACA ;
Thomaz, MT .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 307 (1-2) :142-156
[14]   GENERAL SETTING FOR BERRYS PHASE [J].
SAMUEL, J ;
BHANDARI, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (23) :2339-2342
[15]  
Shapere A., 1989, GEOMETRIC PHASES PHY
[16]   Geometric phases for mixed states in interferometry [J].
Sjöqvist, E ;
Pati, AK ;
Ekert, A ;
Anandan, JS ;
Ericsson, M ;
Oi, DKL ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2000, 85 (14) :2845-2849
[17]  
Uhlmann A., 1986, Reports on Mathematical Physics, V24, P229, DOI 10.1016/0034-4877(86)90055-8