Geometric phases for mixed states in interferometry

被引:486
作者
Sjöqvist, E
Pati, AK
Ekert, A
Anandan, JS
Ericsson, M
Oi, DKL
Vedral, V
机构
[1] Uppsala Univ, Dept Quantum Chem, SE-75120 Uppsala, Sweden
[2] Univ Wales, Sch Informat, Bangor LL57 1UT, Gwynedd, Wales
[3] Bhabha Atom Res Ctr, Div Theoret Phys, Bombay 400085, Maharashtra, India
[4] Univ Oxford, Clarendon Lab, Ctr Quantum Computat, Oxford OX1 3PU, England
[5] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA
关键词
D O I
10.1103/PhysRevLett.85.2845
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a physical prescription based on interferometry for introducing the total phase of a mixed state undergoing unitary evolution, which has been an elusive concept in the past. We define the parallel transport condition that provides a connection form for obtaining the geometric phase for mixed states. The expression for the geometric phase for mixed state reduces to well known formulas in the pure state case when a system undergoes noncyclic and unitary quantum evolution.
引用
收藏
页码:2845 / 2849
页数:5
相关论文
共 25 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   THE GEOMETRIC PHASE [J].
ANANDAN, J .
NATURE, 1992, 360 (6402) :307-313
[3]   GEOMETRIC ANGLES IN QUANTUM AND CLASSICAL PHYSICS [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 129 (04) :201-207
[5]  
de Polavieja GG, 1998, AM J PHYS, V66, P431, DOI 10.1119/1.18799
[6]  
EKERT A, IN PRESS J MOD OPT
[7]   Adiabatic geometric phases and response functions [J].
Jain, SR ;
Pati, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :650-653
[8]   Geometric quantum computation using nuclear magnetic resonance [J].
Jones, JA ;
Vedral, V ;
Ekert, A ;
Castagnoli, G .
NATURE, 2000, 403 (6772) :869-871
[9]   OBSERVATION OF 2PI ROTATIONS BY FRESNEL DIFFRACTION OF NEUTRONS [J].
KLEIN, AG ;
OPAT, GI .
PHYSICAL REVIEW LETTERS, 1976, 37 (05) :238-240
[10]   Noncyclic geometric phase and its non-Abelian generalization [J].
Mostafazadeh, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46) :8157-8171