Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling

被引:667
作者
Uversky, VN [1 ]
Oldfield, CJ
Dunker, AK
机构
[1] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[3] Mol Kinet, Indianapolis, IN 46268 USA
[4] Russian Acad Sci, Inst Biol Instrumentat, Pushchino 142292, Moscow Region, Russia
关键词
highly flexible; intrinsically unstructured; molecular recognition; molten globule; natively unfolded; random coil; rheomorphic;
D O I
10.1002/jmr.747
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Regulation, recognition and cell signaling involve the coordinated actions of many players. To achieve this coordination, each participant must have a valid identification (ID) that is easily recognized by the others. For proteins, these IDs are often within intrinsically disordered (also ID) regions. The functions of a set of well-characterized ID regions from a diversity of proteins are presented herein to support this view. These examples include both more recently described signaling proteins, such as p53, alpha-synuclein, HMGA, the Rieske protein, estrogen receptor alpha, chaperones, GCN4, Arf, Hdm2, FlgM, measles virus nucleoprotein, RNase E, glycogen synthase kinase 3 beta, p21(Waf1/Cip1/Sdi1), caldesmon, calmodulin, BRCA1 and several other intriguing proteins, as well as historical prototypes for signaling, regulation, control and molecular recognition, such as the lac repressor, the voltage gated potassium channel, RNA polymerase and the S15 peptide associating with the RNA polymerase S-protein. The frequent occurrence and the common use of ID regions in important protein functions raise the possibility that the relationship between amino acid sequence, disordered ensemble and function might be the dominant paradigm for the molecular recognition that serves as the basis for signaling and regulation by protein molecules. Copyright (C) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:343 / 384
页数:42
相关论文
共 459 条
[1]   CHARACTERIZATION OF CALCITONIN GENE-RELATED PEPTIDE RECEPTORS AND ADENYLATE-CYCLASE RESPONSE IN THE MURINE MACROPHAGE CELL-LINE P388-D1 [J].
ABELLO, J ;
KAISERLIAN, D ;
CUBER, JC ;
REVILLARD, JP ;
CHAYVIALLE, JA .
NEUROPEPTIDES, 1991, 19 (01) :43-49
[2]   THE 3-DIMENSIONAL STRUCTURE OF FOOT-AND-MOUTH-DISEASE VIRUS AT 2.9-A RESOLUTION [J].
ACHARYA, R ;
FRY, E ;
STUART, D ;
FOX, G ;
ROWLANDS, D ;
BROWN, F .
NATURE, 1989, 337 (6209) :709-716
[3]  
Adler A J, 1973, Methods Enzymol, V27, P675
[4]  
Afasizheva I Iu, 1999, Mol Biol (Mosk), V33, P679
[5]   Visualization of elongation factor G on the Escherichia coli 70S ribosome:: The mechanism of translocation [J].
Agrawal, RK ;
Penczek, P ;
Grassucci, RA ;
Frank, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6134-6138
[6]   EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome [J].
Agrawal, RK ;
Heagle, AB ;
Penczek, P ;
Grassucci, RA ;
Frank, J .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (07) :643-647
[7]   Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation [J].
Allain, FHT ;
Gubser, CC ;
Howe, PWA ;
Nagai, K ;
Neuhaus, D ;
Varani, G .
NATURE, 1996, 380 (6575) :646-650
[8]   Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding [J].
Allain, FHT ;
Yen, YM ;
Masse, JE ;
Schultze, P ;
Dieckmann, T ;
Johnson, RC ;
Feigon, J .
EMBO JOURNAL, 1999, 18 (09) :2563-2579
[9]   MAJOR GLYCOPROTEIN ANTIGENS THAT INDUCE ANTIBODIES IN AIDS PATIENTS ARE ENCODED BY HTLV-III [J].
ALLAN, JS ;
COLIGAN, JE ;
BARIN, F ;
MCLANE, MF ;
SODROSKI, JG ;
ROSEN, CA ;
HASELTINE, WA ;
LEE, TH ;
ESSEX, M .
SCIENCE, 1985, 228 (4703) :1091-1094
[10]  
[Anonymous], 1936, SPECIFICITY SEROLOGI