Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis

被引:257
作者
Guo, Mengjuan [1 ]
Thomas, Julie [1 ]
Collins, Galen [1 ,2 ]
Timmermans, Marja C. P. [1 ,2 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
关键词
D O I
10.1105/tpc.107.056127
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
KNOTTED1-like homeobox (KNOX) genes promote stem cell activity and must be repressed to form determinate lateral organs. Stable KNOX gene silencing during organogenesis is known to involve the predicted DNA binding proteins ASYMMETRIC LEAVES1 (AS1) and AS2 as well as the chromatin-remodeling factor HIRA. However, the mechanism of silencing is unknown. Here, we show that AS1 and AS2 form a repressor complex that binds directly to the regulatory motifs CWGTTD and KMKTTGAHW present at two sites in the promoters of the KNOX genes BREVIPEDICELLUS (BP) and KNAT2. The two binding sites act nonredundantly, and interaction between AS1-AS2 complexes at these sites is required to repress BP. Promoter deletion analysis further indicates that enhancer elements required for BP expression in the leaf are located between the AS1-AS2 complex binding sites. We propose that AS1-AS2 complexes interact to create a loop in the KNOX promoter and, likely through recruitment of HIRA, form a repressive chromatin state that blocks enhancer activity during organogenesis. Our model for AS1-AS2-mediated KNOX gene silencing is conceptually similar to the action of an insulator. This regulatory mechanism may be conserved in simple leafed species of monocot and dicot lineages and constitutes a potential key determinant in the evolution of compound leaves.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 59 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[3]   Homologies in leaf form inferred from KNOXI gene expression during development [J].
Bharathan, G ;
Goliber, TE ;
Moore, C ;
Kessler, S ;
Pham, T ;
Sinha, NR .
SCIENCE, 2002, 296 (5574) :1858-1860
[4]   Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis [J].
Byrne, ME ;
Barley, R ;
Curtis, M ;
Arroyo, JM ;
Dunham, M ;
Hudson, A ;
Martienssen, RA .
NATURE, 2000, 408 (6815) :967-971
[5]  
Byrne ME, 2002, DEVELOPMENT, V129, P1957
[6]   KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis [J].
Chuck, G ;
Lincoln, C ;
Hake, S .
PLANT CELL, 1996, 8 (08) :1277-1289
[7]   The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development [J].
Evans, Matthew M. S. .
PLANT CELL, 2007, 19 (01) :46-62
[8]   Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway [J].
Garcia, Damien ;
Collier, Sarah A. ;
Byrne, Mary E. ;
Martienssen, Robert A. .
CURRENT BIOLOGY, 2006, 16 (09) :933-938
[9]   Insulators: exploiting transcriptional and epigenetic mechanisms [J].
Gaszner, Miklos ;
Felsenfeld, Gary .
NATURE REVIEWS GENETICS, 2006, 7 (09) :703-713
[10]   Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1 [J].
Gendrel, AV ;
Lippman, Z ;
Yordan, C ;
Colot, V ;
Martienssen, RA .
SCIENCE, 2002, 297 (5588) :1871-1873