Serotonin regulates rhythmic whisking

被引:85
作者
Hattox, A
Li, Y
Keller, A [1 ]
机构
[1] Univ Maryland, Sch Med, Dept Anat & Neurobiol, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Program Neurosci, Baltimore, MD 21201 USA
关键词
D O I
10.1016/S0896-6273(03)00391-X
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Many rodents explore their environment by rhythmically palpating objects with their mystacial whiskers. These rhythmic whisker movements ("whisking"; 5-9 Hz) are thought to be regulated by an unknown brainstem central pattern generator (CPG). We tested the hypothesis that serotonin (5-HT) inputs to whisking facial motoneurons (wFMNs) are part of this CPG. In response to exogenous serotonin, wFMNs recorded in vitro fire rhythmically at whisking frequencies, and selective 5-HT2 or 5-HT3 receptor antagonists suppress this rhythmic firing. In vivo, stimulation of brainstem serotonergic raphe nuclei evokes whisker movements. Unilateral infusion of selective 5-HT2 or 5-HT3 receptor antagonists suppresses ipsilateral whisking and substantially alters the frequencies and symmetry of whisker movements. These findings suggest that serotonin is both necessary and sufficient to generate rhythmic whisker movements and that serotonergic premotoneurons are part of a whisking CPG.
引用
收藏
页码:343 / 352
页数:10
相关论文
共 68 条
[1]   INTRACELLULAR STUDIES IN THE FACIAL NUCLEUS ILLUSTRATING A SIMPLE NEW METHOD FOR OBTAINING VIABLE MOTONEURONS IN ADULT-RAT BRAIN-SLICES [J].
AGHAJANIAN, GK ;
RASMUSSEN, K .
SYNAPSE, 1989, 3 (04) :331-338
[2]   OPPOSING EFFECTS OF 5-HYDROXYTRYPTAMINE ON 2 TYPES OF MEDULLARY INSPIRATORY NEURONS WITH DISTINCT FIRING PATTERNS [J].
ARITA, H ;
OCHIISHI, M .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 66 (01) :285-292
[3]  
AULAKH CS, 1992, J PHARMACOL EXP THER, V263, P588
[4]   PERIPHERAL SEROTONERGIC INHIBITION OF SUCKLING [J].
BATEMAN, ST ;
LICHTMAN, AH ;
CRAMER, CP .
PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 1990, 37 (02) :219-225
[5]   Rhythmic whisking by rat: Retraction as well as protraction of the vibrissae is under active muscular control [J].
Berg, RW ;
Kleinfeld, D .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (01) :104-117
[6]   Optoelectronic monitoring of individual whisker movements in rats [J].
Bermejo, R ;
Houben, D ;
Zeigler, HP .
JOURNAL OF NEUROSCIENCE METHODS, 1998, 83 (02) :89-96
[7]   Functional architecture of the mystacial vibrissae [J].
Brecht, M ;
Preilowski, B ;
Merzenich, MM .
BEHAVIOURAL BRAIN RESEARCH, 1997, 84 (1-2) :81-97
[8]   ELECTROMYOGRAPHIC ACTIVITY OF MYSTACIAL PAD MUSCULATURE DURING WHISKING BEHAVIOR IN THE RAT [J].
CARVELL, GE ;
SIMONS, DJ ;
LICHTENSTEIN, SH ;
BRYANT, P .
SOMATOSENSORY AND MOTOR RESEARCH, 1991, 8 (02) :159-164
[9]  
CARVELL GE, 1990, J NEUROSCI, V10, P2638
[10]   Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons [J].
Chang, Q ;
Gonzalez, M ;
Pinter, MJ ;
Balice-Gordon, RJ .
JOURNAL OF NEUROSCIENCE, 1999, 19 (24) :10813-10828